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This paper studies the design of position auctions when bidders have multi-unit demands 
for advertising positions. I propose an ascending clock auction with two stages: allocation 
stage and assignment stage. The allocation stage determines the quantity of positions 
assigned to each advertiser using a generalized version of the Ausubel (2004) auction 
under the context of differentiated items. The assignment stage determines the ranking 
of advertisements using a generalized version of the generalized English auction under 
the context of multi-unit demands. I show that this two-stage ascending clock auction 
dynamically implements the VCG outcome in an ex post perfect equilibrium under pure 
private values.
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1. Introduction

Position auctions are used by many search engines such as Google and Yahoo! to allocate sponsored advertising slots to 
advertisers. In addition to search engines, online social platforms such as Facebook and Twitter, online review and booking 
platforms such as Yelp, Tripadvisor and Expedia, and online shopping platforms such as Amazon and eBay have all been 
using auctions to allocate sponsored advertising slots to suppliers and business owners.2 Position auctions have become a 
major revenue source for many of these two-sided platforms and have attracted extensive research interests in the past 
decade.

This paper constructs an efficient position auction that allows bidders to have multi-unit demands. The proposed auction 
implements the efficient outcome with a single ascending clock in two stages: allocation stage and assignment stage. The 
allocation stage determines the quantity of advertising slots allocated to each bidder. The assignment stage determines 
the rankings associated with each bidder’s advertising slots. The proposed two-stage ascending clock auction implements 
the VCG outcome in an ex post perfect equilibrium under pure private values. Compared to the Ausubel (2006) auction 
for selling heterogeneous commodities using multiple clocks, the proposed auction offers a simpler format to dynamically 
implement the VCG outcome under the special setting of position auctions.

✩ I thank the editor and two anonymous referees for many helpful comments and suggestions. I also want to thank Prof. Lawrence Ausubel, Prof. Daniel 
Vincent, Prof. Emel Filiz-Ozbay and conference participants for their helpful suggestions and feedback.
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2 Many papers have discussed the use of sponsored advertising auctions in online platforms, including Edelman et al. (2007), Varian (2007), Athey 

and Ellison (2011), Goldman and Rao (2014), Jeziorski and Segal (2015), etc. Google, Facebook, Twitter, Yelp, Tripadvisor, Expedia, and Amazon all have 
business-facing websites providing guidance on participating in their sponsored advertising auctions.
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The motivation of this paper comes from that the previous literature on position auctions assumes each bidder only 
demands a single advertising slot. Moreover, most position auction formats, including the GSP auction and its variations,3 as 
well as the generalized English auction,4 are designed and studied based on this assumption. However, in some real-world 
position auctions, advertisers may have values over placing multiple sponsored advertisements in the same search result list. 
This is especially common in online retail platforms such as Amazon and eBay, where a lot of advertisers are multi-product 
suppliers selling differentiated products under the same category. Such suppliers may want to list several of their products 
in the same sponsored product list.5 In addition to advertisers on online retail platforms, advertisers on online review and 
booking platforms may also demand multiple slots in the same sponsored business list.6

When bidders have values over getting multiple advertising slots, there is no reason to restrict each bidder from getting 
multiple slots under either surplus-maximizing or revenue-maximizing objective. While the current auction systems used by 
some platforms such as Google7 and Amazon8 already allow multiple advertisements from the same bidder to appear in the 
same sponsored search result list, the design of position auctions with multi-unit demand bidders is not well understood 
in the literature. How to design a position auction to allocate advertising slots efficiently when bidders have multi-unit 
demands is an interesting problem, as the auction needs to select both the quantity of slots allocated to each bidder and 
the rankings associated with each bidder’s slots. This paper extends the study of position auctions by designing a two-stage 
ascending clock auction that allocates advertising slots efficiently among multi-unit demand bidders.

2. Related literature

This paper is related to a variety of strands in the literature. First, this paper is built upon the literature on position 
auctions. Among the earliest literature on position auctions, Edelman et al. (2007) and Varian (2007) study properties of GSP 
and VCG position auctions under complete information. Edelman et al. (2007) construct a dynamic position auction called 
the generalized English auction and show that this auction implements the VCG outcome in an ex post equilibrium. Since 
Edelman et al. (2007) and Varian (2007), many papers have studied position auctions under different modeling assumptions 
and design objectives, including Kominers (2009), Milgrom (2010), Edelman and Schwarz (2010), Athey and Ellison (2011), 
Chen and He (2011), Yenmez (2014), and Gomes and Sweeney (2014). All of the aforementioned papers assume that each 
advertiser only demands a single position. This paper contributes to this literature by extending position auctions into the 
more general multi-unit demand setting.

Second, this paper is related to the literature on efficient auction design. Early literature on efficient auction design in-
cludes the classic work of Vickrey (1961), Clarke (1971), and Groves (1973), who characterize a dominant strategy incentive 
compatible mechanism under pure private values. Ausubel et al. (2014) generalize the Vickrey auction into homogeneous 
item auctions with multi-unit demand bidders. Ausubel (2004)9 constructs an efficient ascending-bid auction for homo-
geneous items that dynamically implements the VCG outcome in an ex post perfect equilibrium. In the Ausubel (2004)
auction, a bidder “clinches” an item when the aggregate demand of its opponents falls below aggregate supply, and items 
are awarded at the price whenever they are “clinched.” This paper generalizes the clinching rule in Ausubel (2004) into po-
sition auctions with multi-unit demand bidders. Ausubel (2006) proposes an efficient dynamic auction for selling multiple 
heterogeneous commodities. In the Ausubel (2006) auction, the auctioneer announces a price vector in each round, and each 
bidder responds by reporting one or more demand vectors that indicate its optimal consumption bundle(s) at the current 
price vector. The auctioneer then adjusts the price vector based on whether there is excess demand in a tatonnement pro-
cess. Sincere bidding is an ex post perfect equilibrium of this auction. While the Ausubel (2006) auction can implement the 
efficient outcome under the context of position auctions, it requires using K clock prices to allocate K differentiated slots, 
and bidders are required to report K -dimensional demand vectors that indicate their demand for each of the K slots along 
the price path. Moreover, a parallel auction with multiple price paths10 is required for implementing the VCG outcome in 
the Ausubel (2006) auction, which makes the auction procedure relatively complicated. This paper constructs an alternative 

3 The GSP auction has several variations, such as the GSP auction with quality-score adjusted bids and the GSP auction with pay-per-action payment rule 
(Edelman et al., 2007; Athey and Ellison, 2011).

4 Edelman et al. (2007) introduce an ascending clock auction called the generalized English auction and show this auction dynamically implements the 
VCG outcome under pure private values.

5 For example, a shoes supplier may want to list several of its products with different styles and prices in the sponsored product list for shoes on 
Amazon.

6 For example, a hotel chain with multiple locations in the same geographical region may want to list several of its hotels on the same sponsored 
business list on Expedia.

7 According to the Google Ads website, Google currently allows each advertiser to bid for multiple ads. When a user enters a search, Google’s ads system 
finds all eligible ads that match the search and enters all corresponding bids into an auction. Therefore, when an advertiser places bids for multiple ads 
that are relevant to the same search, all of its ads that are identified to match the search are entered into auction when there’s a relevant search.

8 Similar to Google’s ad system, Amazon’s current ad auction system allows sellers to bid for multiple products and allows multiple bids from the same 
seller to be considered in the same sponsored product list.

9 The dynamic auction for homogeneous items in Ausubel (2004) is referred to as “Ausubel auction” or “Ausubel (2004) auction” hereafter in this paper.
10 In the Ausubel (2006) auction, if the initial price vector p(0) is chosen such that the market without bidder i clears at p(0), then bidder i receives its 

VCG payoff in an ex post perfect equilibrium. Without identical bidders, it is generally not possible to select an initial price vector p(0) such that every 
bidder receives its VCG payoff. Therefore, a parallel auction game with N price paths is required for computing the VCG payoff for every bidder when there 
are N > 2 non-identical bidders in the auction.
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efficient dynamic auction that is tailored specifically to position auctions. The proposed auction can implement the VCG 
outcome using a single clock, which reduces the complexity of auction design under the special setting of position auctions.

Third, this paper connects with the literature on dynamic implementation of VCG outcome. In addition to Ausubel (2004, 
2006), this strand of literature also includes work by Bikhchandani and Ostroy (2006), Mishra and Parkes (2007), Gul and 
Stacchetti (2000), Sun and Yang (2014), and Baranov (2018). de Vries et al. (2007) show that gross substitutes is a necessary 
condition for existence of ascending auctions to implement the VCG outcome. This paper contributes to this literature by 
designing a dynamic auction to implement the VCG outcome in allocating a set of vertically differentiated items, which is a 
special case of heterogeneous substitutable items.

3. Model

An auctioneer wishes to allocate K sponsored advertising positions among a set of N bidders. The N bidders are indexed 
by i ∈ {1, 2, · · · , N}. The K advertising positions are indexed by k ∈ {1, 2, · · · , K }. The click-through rate (CTR) profile of the 
advertising positions is given by (α1, α2, · · · , αK ), in which α1 ≥ α2 ≥ · · · ≥ αK . The click-through rate profile is exogenously 
given and commonly known by all bidders.11

Each bidder i has value from receiving clicks on its advertisement(s) placed on the search result page. There is no 
restriction on the total number of advertisements that a single bidder can place. Each bidder can demand up to K units 
of advertising slots and can be assigned any quantity qi of slots, in which qi ∈ {0, 1, 2, · · · , K }. Moreover, each bidder’s 
value from receiving a click depends on whether the click is made on its first advertisement, its second advertisement, its 
third advertisement, etc. Bidders have diminishing marginal values over advertising slots, i.e., each bidder’s value per click 
from its first advertisement is greater than its value per click from its second advertisement, which is in turn greater than 
its value per click from its third advertisement, etc.12 Under this diminishing marginal value assumption, each bidder i’s 
per-click value profile is given by a K -dimensional vector:

vi ≡ (v1
i , v2

i , · · · , v K
i ), v1

i ≥ v2
i ≥ · · · ≥ v K

i ≥ 0 (1)

in which vn
i denotes bidder i’s value per click from its n-th advertisement in the search result list. Each bidder i knows its 

own values vi but does not know other bidders’ values v−i .
Assume bidders have quasilinear utilities. Let qi denote the final quantity of positions assigned to bidder i. Let ri ≡

(r1
i , r2

i , · · · , rqi
i ) ∈ Rqi denote the rankings associated with the qi positions assigned to bidder i, in which r1

i is the ranking 
of the highest position assigned to bidder i, r2

i is the ranking of the second highest position assigned to bidder i, etc. Then 
bidder i’s total payoff from winning qi positions with ranking vector ri at total payment pi is given by

u(vi,qi, ri, pi) =
qi∑

n=1

vn
i × αrn

i
− pi (2)

in which 
∑qi

n=1 vn
i × αrn

i
is bidder i’s total value from winning qi positions with ranking vector ri . For example, if bidder i

wins qi = 2 positions with ranking vector ri = (1, 4) at a total price of pi , then its payoff from winning these two positions 
is given by α1 v1

i + α4 v2
i − pi .

4. An efficient two-stage ascending clock auction

In this section, I characterize an efficient ascending clock auction that combines features from the Ausubel (2004) auction 
and the generalized English auction in Edelman et al. (2007). There are two stages in the proposed ascending clock auction: 
allocation stage and assignment stage. The allocation stage determines the quantity of advertising slots assigned to each 
bidder. The assignment stage determines the rankings associated with each winning bidder’s slots.

11 This paper assumes that, with multi-unit demand bidders, the click-through rate of an advertising slot depends only on the ranking of the slot and 
does not depend on how many advertisements the given advertiser has placed. This is a reasonable simplifying assumption when bidders demand multiple 
slots for their differentiated products and consumers have heterogeneous preferences over the same bidder’s products. The click-through rate of a bidder’s 
second advertisement is unlikely to be affected by its first advertisement or the total number of advertisements this bidder placed in the search list, as 
different advertisements would attract clicks from different groups of consumers. For many online platforms, clicks are largely driven by daily traffic and 
therefore can be viewed as exogenous.
12 The diminishing marginal value assumption in this paper can be interpreted as follows. Each bidder’s value from receiving a click on an ad can be 

interpreted as its expected profit from receiving a click on that specific ad. A bidder who places multiple ads can have different values per click among 
its own ads. For example, a TV supplier that sells multiple TV models can have a higher value per click from the advertisement on its newest model than 
its older models. An upscale restaurant with multiple locations can have a higher value per click from the advertisement on its location in high-income 
neighborhood than its other locations. Such bidder would always places its highest value per click advertisement in the first advertising slot it wins, places 
its second highest value per click advertisement in the second advertising slot it wins, etc. Therefore, it is reasonable to assume that a bidder’s value per 
click from its first advertisement is greater than its value per click from its second advertisement, which is in turn greater than its value per click from its 
third advertisement, etc.
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4.1. Allocation stage: an Ausubel auction with differentiated units

Consider an ascending clock auction with a single continuous clock price.13 At any time t of the auction, let pt ∈ R
denote the clock price, and let xt

i ∈ {0, 1, 2, · · · , K } denote the quantity of slots that each bidder i demands at pt . Suppose 
the auction is fully subscribed at the initial price p0, i.e., 

∑
i x0

i > K , then the clock price increases continuously as long as 
the aggregate demand is strictly above the aggregate supply K , 

∑
i xt

i > K . The bidders can reduce their reported demand 
at any time of the auction. It is required that all bidders must bid monotonically:

xt′
i ≤ xt

i for all i, for all t′ > t (3)

The allocation stage ends at the earliest time t = T when there is no excess demand, 
∑

i xT
i ≤ K .

Following Ausubel (2004), a bidder i clinches K −∑
j �=i xt

j units of advertising slots at price pt at the earliest time t when 
the aggregate demand of its opponents falls below the aggregate supply K . Bidder i clinches additional 

∑
j �=i xt

j − ∑
j �=i xt′

j

units of slots at price pt′ at the earliest time t′ > t when the aggregate demand of its opponents further falls below 
∑

j �=i xt
j , 

etc. Formally, at any time t before the allocation stage ends, bidder i’s cumulative clinches Ct
i is given by

Ct
i = max

{
0, K −

∑
j �=i

xt
j

}
(4)

All bidders are constrained not to demand lower quantities than the quantities that they have already clinched:

xt′
i ≥ Ct

i for all i, for any t′ > t. (5)

At the end of allocation stage, if 
∑

i xT
i = K , then there is no excess supply at pT . In this scenario, each bidder i’s final 

cumulative clinches C T
i equals to its reported demand xT

i , C T
i = xT

i = K − ∑
j �=i xT

j . If 
∑

i xT
i < K , then there is excess supply 

of K − ∑
i xT

i slots at pT . In this scenario, the prioritized rationing rule proposed in Okamoto (2018) is used to allocate the 
excess supply. Each bidder i’s final cumulative clinches C T

i equals to its reported demand xT
i at the end of allocation stage 

plus any additional units δi ≥ 0 allocated under the rationing rule, C T
i = xT

i + δi . The design of the entire auction procedure, 
including its clinching rules and rationing rules, is publicly announced to all bidders at the beginning of the auction.

Under the prioritized rationing rule, each of the N bidders is assigned a randomly generated priority ranking. When 
there is excess supply at the end of allocation stage, the bidder with the highest priority ranking is assigned the extra 
units up to its lowest demand during the time 0 ≤ t < T . The bidder with the second highest priority ranking is assigned 
the remaining extra units up to its lowest demand during the time 0 ≤ t < T , etc. This process is repeated until all excess 
supply of K − ∑

i xT
i units are assigned. Formally, the bidder with priority ranking j is allocated C T

j slots, in which

C T
1 = min{xt

1, xT
1 + K −

N∑
i=1

xT
i }, ∀t < T

C T
2 = min{xt

2, xT
2 + K −

N∑
i=2

xT
i − C T

1 }, ∀t < T

· · ·

C T
j = min{xt

j, xT
j + K −

N∑
i= j

xT
i −

j−1∑
i=1

C T
i }, ∀t < T

· · ·

C T
N = min{xt

N , K −
N−1∑
i=1

C T
i }, ∀t < T

(6)

Under this rationing rule, the total number of slots assigned at the end of allocation stage always equals to K , i.e., 
∑

i C T
i =

K . Once the allocation stage ends, the total quantity of slots assigned to each bidder i is final. No bidder can obtain any 
additional slots beyond its final cumulative clinches C T

i in the assignment stage.
Since the advertising slots have different rankings and click-through rates, a few modifications on the allocation rule and 

payment rule are made when generalizing the Ausubel (2004) auction into the position auction setting. For each bidder 
i, when the aggregate demand of bidder i’s opponents first falls below the aggregate supply K at clock price pt , bidder 

13 All clock prices in this paper are per-click prices.
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i clinches the lowest ranked Ct
i positions at a price of pt per click. When the aggregate demand of bidder i’s opponents 

further drops at a higher price pt′ > pt , bidder i clinches the next higher ranked Ct′
i − Ct

i positions above those Ct
i slots 

it has already clinched, at a price of pt′ per click, etc. For example, a bidder clinches the lowest ranked position with αK

clicks at the price when the aggregate demand of its opponents falls from K to K −1 and clinches the second lowest ranked 
position with αK−1 clicks at the price when the aggregate demand of its opponents falls from K − 1 to K − 2. At the end 
of the allocation stage, each bidder i with C T

i > 0 has cumulatively clinched the lowest ranked C T
i positions.14

I next restrict attention to those bidders with C T
i > 0 and formally define the payment rule in the allocation stage. For 

each bidder i with C T
i > 0, suppose Ct

i jumps n times in the allocation stage. Let t(1), t(2), · · · , t(n) denote the time at 
which bidder i clinches a positive number of units. Then 0 < Ct(1)

i < Ct(2)
i < · · · < Ct(n)

i = C T
i . At the end of the allocation 

stage, bidder i has clinched Ct(1)
i lowest ranked positions at price pt(1) , the next higher ranked Ct(2)

i − Ct(1)
i positions at 

price pt(2) , · · · , the next higher ranked Ct(n)
i − Ct(n−1)

i positions at price pt(n) . The intuition of this modified clinching rule 
is that when the aggregate demand of opponents first falls below aggregate supply by Ct(1)

i units, bidder i is guaranteed to 
win at least (and worst) the lowest ranked Ct(1)

i positions at price pt(1) , regardless of how its opponents bid in the rest of 
the auction. Similarly, when the aggregate demand of opponents further falls below aggregate supply by Ct(2)

i − Ct(1)
i units 

at price pt(2) , bidder i is guaranteed to win the next higher ranked Ct(2)
i − Ct(1)

i positions at price pt(2) , regardless of how 
its opponents bid in the rest of the auction, etc.

It follows that bidder i’s total payment for its clinched positions in the allocation stage (Stage I) is given by

P I
i =

n∑
m=1

K−Ct(m−1)
i∑

k=K−Ct(m)
i +1

αk pt(m)

=
K∑

k=K−Ct(1)
i +1

αk × pt(1) +
K−Ct(1)

i∑
k=K−Ct(2)

i +1

αk × pt(2) + · · · +
K−Ct(n−1)

i∑
k=K−Ct(n)

i +1

αk × pt(n)

(7)

I next present an example to illustrate how the allocation stage works.

4.2. An illustrative example of the allocation stage

Consider an auction with K = 3 positions and click-through rate profile (α1, α2, α3) = (400, 300, 100). There are N = 2
advertisers, A and B. Both advertisers have values for getting more than one positions, and their marginal values are given 
in the following table. All numbers in the table are in dollar values.

Bidder A Bidder B

Marginal per-click value (first unit) 10 12
Marginal per-click value (second unit) 8 9
Marginal per-click value (third unit) 5 2

The allocation stage starts in the form of an ascending clock auction. Suppose the auction begins at price p0 = 0. Both 
bidders A and B would respond with demand of 3 units at p0 = 0. The aggregate demand of 6 units exceeds the aggregate 
supply of 3 units, so the price increases. Suppose that Bidder B reduces demand from 3 units to 2 units at the price of $2, 
yielding:

Price Bidder A Bidder B Aggregate demand Allocation

2 3 2 5 A clinches Position 3

While the aggregate demand is still greater than the aggregate supply, from Bidder A’s perspective, the total demand of 
its opponent is now 1 unit below the aggregate supply. Since all bidders are required to bid monotonically and no bid-
der will be allowed to obtain extra positions in the assignment stage, Bidder A is guaranteed to win at least 1 unit of 

14 When ∑i xT
i < K , each bidder i who receives a positive number of rationed units δi > 0 “clinches” δi slots above the lowest ranked xT

i positions at pT

per click. For example, if a bidder clinches one unit at pt = 2 and is assigned an additional unit under the prioritized rationing rule at pT = 3, then this 
bidder is considered to have clinched the lowest ranked position at the price of 2 per click and the second lowest ranked position at the price of 3 per 
click.
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position in the final allocation. Even if Bidder A does not participate in the assignment stage, it is guaranteed to win the 
lowest ranked position with α3 clicks. Therefore, Bidder A clinches Position 3 with α3 = 100 clicks at the price of $2 per 
click.

Since there is still excess demand, price continues to increase. Suppose that Bidder A drops demand from 3 units to 2 
units at the price of $5, yielding:

Price Bidder A Bidder B Aggregate demand Allocation

5 2 2 4 B clinches Position 3

From Bidder B’s perspective, the total demand of opponent is now 1 unit below the aggregate supply. Under the monotonic 
bidding rule, Bidder B is now guaranteed to win 1 unit of position no matter how Bidder A will bid later in the allocation 
stage. However, since Bidder A has the opportunity to upgrade its clinched units in the assignment stage, there is no 
guarantee for Bidder B to win any position ranked higher than Position 3 at this time. Hence, Bidder B clinches Position 3 
with α3 = 100 clicks at the price of $5 per click.

The clock price continues to increase given that there is still excess demand. Suppose that Bidder A further drops demand 
from 2 units to 1 unit at the price of $8, yielding:

Price Bidder A Bidder B Aggregate demand Allocation

8 1 2 3 B clinches Position 2

Since the total demand of Bidder B’s opponent is now 2 units below the total supply, Bidder B is now guaranteed to win 
2 units of positions. Although Bidder A may upgrade its clinched position in the assignment stage, Bidder B is guaran-
teed to get at worst Position 2 for its first unit and at worst Position 3 for its second unit. Therefore, Bidder B clinches 
Position 2 with α2 = 300 clicks at the price of $8 per click. Since the aggregate demand now equals the aggregate sup-
ply, the allocation stage ends at the price of $8. The outcome of the allocation stage is summarized in the following 
table:

Bidder A Bidder B

Units clinched 1 2
Positions clinched {Position 3} {Position 2,Position 3}
Clicks clinched 100 300 + 100 = 400
Payment 100 × 2 = 200 100 × 5 + 300 × 8 = 2900

4.3. Assignment stage: a generalized English auction with multi-unit demands

At the end of the allocation stage, each bidder i’s final cumulative clinches C T
i can be viewed as its “claims” for posi-

tions, and each bidder i’s payment P I
i in the allocation stage can be viewed as a payment for securing its claims. In the 

assignment stage, each bidder’s payment in the allocation stage becomes a sunk cost. All active bidders take their claims 
into the assignment stage and compete for higher rankings for their clinched positions. The final ranking associated with 
each bidder’s clinched positions is determined along with additional payments in the assignment stage. The design of the 
assignment stage is described below.

The assignment stage starts immediately from the ending price pT of the allocation stage. At the beginning of the 
assignment stage, all bidders with positive demand xT

i > 0 are considered to be active. If 
∑

i xT
i < K at the end of allocation 

stage, then the lowest ranked K − ∑
i xT

i slots are assigned to those bidders who receive a positive number of slots under 
the prioritized rationing rule at time T .15 All assignments in the assignment stage are final. If 

∑
i xT

i = K at the end of 
allocation stage, no final assignment is made at time T .

At any time of the assignment stage, let pt denote the current clock price in the auction. The clock price continues to 
increase when there are more than one active bidders in the auction. Each bidder may further reduce its demand as the 
price increases. Similar to the requirement in allocation stage, all bidders must bid monotonically in the assignment stage:

xt′
i ≤ xt

i for all i, for all t′ > t (8)

15 In the scenario when multiple slots are allocated under the rationing rule, i.e., K − ∑
i xT

i ≥ 2, and multiple bidders receive slots under the rationing 
rule, the exact ranking of these bidders within the lowest ranked K − ∑

i xT
i positions should be determined randomly by a lottery.
184



H. Yan Games and Economic Behavior 127 (2021) 179–193
The first bidder who reduces demand by 1 unit gets the lowest ranked position above any rationed positions assigned at 
time T , as one of its clinched positions. The next bidder (who can be the same as the first bidder) who reduces demand 
by 1 unit gets the second lowest ranked position above any rationed positions assigned at time T , as one of its clinched 
positions, etc.16 The auction ends when there is only one active bidder with strictly positive demand. That bidder gets the 
remaining unassigned position(s).

Let r ∈ {1, 2, · · · , K } denote the ranking of a position. Let p(r) denote the clock price at which position r is assigned. Let 
qi denote the total number of positions allocated to bidder i in the allocation stage. For every bidder i with qi > 0, define the 
vector (r1

i , r2
i , · · · , rqi

i ) to be the ranking of positions assigned to bidder i in the assignment stage, with r1
i < r2

i < · · · < rqi
i . 

Then r1
i is the highest ranking within the qi slots assigned to bidder i; r2

i is the second highest ranking within the qi slots 
assigned to bidder i, etc. For any n ∈ {1, 2, · · · , qi}, rn

i is the ranking of bidder i’s n-th highest position. According to the 
assignment rule, lower-ranked positions are assigned before higher-ranked positions, which implies p(rqi

i ) ≤ p(rqi−1
i ) ≤ · · · ≤

p(r1
i ).
Note that for every bidder i with qi > 0, for any n ∈ {1, 2, · · · , qi}, the default ranking of bidder i’s n-th highest position 

is K − qi + n.17 The price of the αK−qi+n clicks associated with the default ranking is already determined in the allocation 
stage. In order to upgrade the ranking of its n-th highest position from K − qi + n to rn

i ≤ K − qi + n, bidder i needs to pay 
an upgrading fee for those extra clicks beyond its clinched αK−qi+n clicks. The upgrading fee for bidder i’s n-th highest unit 
is given by

K−qi+n−1∑
k=rn

i

(αk − αk+1)p(k + 1) (9)

The intuition of this upgrading payment rule is that, each bidder i pays the total externalities imposed on its opponents 
by moving up each of its clinched positions, evaluated at corresponding losing bids.18 For any k, the externalities that 
bidder i imposes on its opponents from moving up a position from k + 1 to k is the value of additional clicks it receives 
from position k, evaluated at the price when position k + 1 is assigned. The total externalities that bidder i imposes on its 
opponents from moving up its n-th position from K − qi + n to rn

i is the sum of externalities associated with every step 
of move from k + 1 to k, for k = K − qi + n − 1, K − qi + n − 2, · · · , rn

i , evaluated at relevant demand-reducing prices of 
opponents. Summing up the total externalities imposed on opponents from moving up all of its qi positions, bidder i’s total 
payment in the assignment stage (Stage II) is given by

P I I
i =

qi∑
n=1

K−qi+n−1∑
k=rn

i

(αk − αk+1)p(k + 1) (10)

Note that bidder i only pays an upgrading fee for the extra clicks resulted from moving up its slots, while its payment for 
clicks associated with the default ranking of each slot remains unchanged from the allocation stage. In this way, a bidder’s 
payment for moving up a slot in the assignment stage is independent of its payment for claiming that slot in the allocation 
stage. This feature enables bidders to view how many slots to claim and whether to move up their slots as two independent 
decisions. I next present an example to illustrate how the assignment stage works.

4.4. An illustrative example of the assignment stage

Continue to consider the example in subsection 4.2. At the price pT = 8, there is no excess demand in the auction. 
Bidder A has clinched 1 position with a default ranking of 3. Bidder B has clinched 2 positions with default rankings of 2 
and 3, respectively. The auction will next proceed into assignment stage. In the assignment stage, the clock price will keep 
increasing from pT = 8 until there is only 1 active bidder left in the auction.

When no bidder has reduced demand, both bidders are competing for upgrading their last unit from Position 3 to 
Position 2. From the perspective of each bidder, reducing demand by 1 unit means dropping out from the competition for 

16 If a bidder reduces demand by n ≥ 2 units at the same price, it wins the current n lowest-ranked unassigned positions when no other bidder reduces 
demand at the same price. A tie-breaking lottery will be used to determine ranking when multiple bidders reduce demand at the same price. For example, 
if two bidders each reduce demand by 1 unit simultaneously and the rank of the lowest unassigned position at that time is given by r , then a tie-breaking 
lottery will be used to assign position r and r − 1 to these two bidders. Each bidder should have 1/2 chance of receiving position r and 1/2 chance of 
receiving position r − 1 under the tie-breaking lottery.
17 To see why this is the case, first consider bidder i’s qi -th slot. The default ranking of this slot is always the lowest position K , according to the modified 

clinching rule in the allocation stage. Similarly, the default ranking of bidder i’s (qi − 1)-th slot is always the second lowest position K − 1. The default 
ranking of bidder i’s n-th slot is given by K − qi + n.
18 In an ex post equilibrium (characterized in section 5), all bidders reduce demand at their true marginal values. In equilibrium, the value of clicks 

evaluated at the demand-reducing price (i.e., highest losing bid for the higher ranked position) equal the value of clicks to the marginal losing bidder of 
the higher ranked position.
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upgrading its last unit from Position 3 to Position 2. Suppose Bidder B reduces demand from 2 units to 1 unit at price of 
$9, yielding:

Price Bidder A Bidder B Number of active 
bidders

Assignment

9 1 1 2 B is assigned Position 3

As the first bidder who reduces demand, Bidder B will be assigned the lowest-ranked position, Position 3. Since Bidder B is 
guaranteed to win at least Position 3 as its last unit from the allocation stage, Bidder B does not need to pay any upgrading 
fee for winning Position 3.

Given that there are still 2 active bidders left in the auction, the clock price will continue to increase. After Position 3 is 
assigned, both bidders are now competing for upgrading their first unit from Position 2 to Position 1. From the perspective 
of each bidder, reducing demand by 1 means dropping out from the competition for upgrading its first unit from Position 2 
to Position 1. Suppose Bidder A reduces demand from 1 unit to 0 unit at the price of $10, yielding:

Price Bidder A Bidder B Number of active 
bidders

Assignment

10 0 1 1 A is assigned Position 2
B is assigned Position 1

As the second bidder who reduces demand, Bidder A will be assigned the second-lowest ranked position, Position 2. Bidder 
A has upgraded its clinched position from Position 3 to Position 2. Bidder A’s upgrading payment is given by

P I I
A =(α2 − α3) × p(3)

=(300 − 100) × 9

=1800

(11)

Since there is only 1 active bidder left in the auction, the auction will end at price of $10. Bidder B will be assigned the 
remaining position, Position 1, after Bidder A drops out. Bidder B has upgraded its first unit from Position 2 to Position 1. 
Bidder B’s upgrading payment for winning Position 1 is given by

P I I
B =(α1 − α2) × p(2)

=(400 − 300) × 10

=1000

(12)

The outcome of the assignment stage can be summarized in the following table:

Bidder A Bidder B

Positions clinched {Position 3} {Position 2,Position 3}
Positions assigned {Position 2} {Position 1,Position 3}
Extra clicks 300 − 100 = 200 400 − 300 = 100
Upgrading payment (300 − 100) × 9 = 1800 (400 − 300) × 10 = 1000

The cumulative outcome of the auction is summarized in the following table:

Bidder A Bidder B

Units won 1 2
Positions won {Position 2} {Position 1,Position 3}
Clicks won 300 400 + 100 = 500
Total payment 100 × 2︸ ︷︷ ︸

base price

+ (300 − 100) × 9︸ ︷︷ ︸
upgrading price

= 2000 100 × 5︸ ︷︷ ︸
base price

+300 × 8︸ ︷︷ ︸
base price

+ (400 − 300) × 10︸ ︷︷ ︸
upgrading price

= 3900
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5. Equilibrium analysis

This section characterizes the ex post perfect equilibrium of the two-stage ascending clock auction.
First, consider a bidder’s equilibrium strategy in the assignment stage given any outcome from the allocation stage. Let 

{qi, xT
i , δi}N

i=1 denote the outcome of allocation stage at time T , in which qi is the total number of slots allocated to each 
bidder i, xT

i is the reported demand of each bidder i at the end of allocation stage, and δi is the number of slots allocated 
to each bidder i under the rationing rule. By definition, qi = xT

i + δi for all i and 
∑

i qi = K .
At any time t of the assignment stage, the strategy of each active bidder i is specified by its reported demand xi(pt , ht)

at the current clock price pt , given history ht . ht contains the outcome of the allocation stage {qi, xT
i , δi}N

i=1 and the demand 
history up to time t . The following proposition characterizes each active bidder i’s ex post perfect equilibrium strategy in 
the assignment stage.

Proposition 1. In the assignment stage, at any price pt , given any history ht with outcome {qi, xT
i , δi}N

i=1 from the allocation stage, for 
any active bidder i with xT

i > 0, define strategy Q I I
i (pt , ht) as follows:

Q I I
i (pt,ht) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xT
i if pt ∈ (pT , v

xT
i

i )

xT
i − 1 if pt ∈ [v

xT
i

i , v
xT

i −1
i )

xT
i − 2 if pt ∈ [v

xT
i −1

i , v
xT

i −2
i )

· · ·
1 if pt ∈ [v2

i , v1
i )

0 if pt ∈ [v1
i ,∞)

(13)

An ex post perfect equilibrium strategy for each bidder i with xT
i > 0 at any time t of the assignment stage is given by

xI I∗
i (pt ,ht) = min

{
xt′

i , Q I I
i (pt ,ht)

}
, ∀t′ < t (14)

The N-tuple strategy xI I∗(pt , ht) = (
xI I∗

1 (pt , ht), xI I∗
2 (pt , ht), · · · , xI I∗

N (pt , ht)
)

is an ex post perfect equilibrium of the assignment 
stage.

Proof. See Appendix A. �
To better understand Proposition 1, consider the interpretation of demand reduction in the assignment stage. Since 

the quantity of positions assigned to each bidder is already determined in the allocation stage, there is no real “demand 
reduction” in the assignment stage. For each bidder i with xT

i > 0, at any time in the assignment stage at which its demand 
remains at xT

i , bidder i is deciding between getting the current lowest unassigned position as its xT
i -th position and getting 

the next higher position as its xT
i -th position with a higher upgrading fee. Reducing demand from xT

i to xT
i − 1 implies 

that bidder i prefers getting the current lowest unassigned position as its xT
i -th position over further upgrading its xT

i -th 
position to the next higher rank. Similarly, for any n ∈ {1, 2, · · · , xT

i }, reducing demand from n to n − 1 implies that bidder 
i prefers getting the current lowest unassigned position as its n-th highest position over further upgrading its n-th highest 
position to the next higher rank. This is the correct interpretation of demand reduction in the assignment stage.

Proposition 1 comes from the fact that, given any outcome in the allocation stage, with any demand-reducing history ht , 

each active bidder i with xT
i > 0 would be willing to upgrade its xT

i -th position until the clock price reaches v
xT

i
i , the value 

from receiving an extra click on its xT
i -th advertisement. When the clock price exceeds v

xT
i

i , the payoff from upgrading its 
xT

i -th position from the current lowest unassigned position to the next higher-ranked position becomes negative. Therefore, 
assuming all opposing bidders are following the same strategy, it is optimal for bidder i to reduce its reported demand 

from xT
i to xT

i − 1 at clock price v
xT

i
i . Similarly, it is optimal for bidder i keep its reported demand at xT

i − 1 when the clock 

price is in the interval [v
xT

i
i , vxT

i −1
i ), during which the payoff from upgrading its (xT

i − 1)-th position from the current lowest 
unassigned position to the next higher position is strictly positive. Under the same reasoning, for every n ∈ {1, 2, · · · , xT

i }, 
assuming all opposing bidders are following the equilibrium strategy, bidder i can maximize its ex post payoff by keeping 
demand at n when the clock price falls in the interval [vn+1

i , vn
i ), subject to the monotonic bidding requirement. If a bidder 

makes a mistake by reducing demand too early in the auction, its optimal strategy after the mistake would be to keep its 
demand until the clock price rises to its marginal value for the next slot.19 The minimum function in equation (14) ensures 

19 For example, suppose a bidder reduces demand from 2 to 1 at pt = 10, while its marginal value profile is (v1
i , v2

i ) = (20, 15). An ex post equilibrium 
strategy for this bidder is to keep its demand at 1 when 10 ≤ pt < 20 and drop out at pt = 20.
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that the equilibrium strategy at any time t is well specified under any mistakes that bidder i might have made before 
time t .

Next, consider each bidder’s equilibrium strategy in the allocation stage. At any time t in the allocation stage, each 
bidder’s strategy specifies its reported demand at current clock price pt , given any demand-reducing history ht up to time 
t in the allocation stage. The following proposition characterizes each bidder i’s ex post perfect equilibrium strategy in the 
allocation stage.

Proposition 2. In the allocation stage, at any price pt , given any history ht , for each bidder i, define strategy Q I
i (pt , ht) as follows:

Q I
i (pt,ht) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K if pt ∈ [p0, v K
i )

K − 1 if pt ∈ [v K
i , v K−1

i )

K − 2 if pt ∈ [v K−1
i , v K−2

i )

· · ·
1 if pt ∈ [v2

i , v1
i )

0 if pt ∈ [v1
i ,∞)

(15)

An ex post perfect equilibrium strategy for each bidder i at any time t in the allocation stage is given by

xI∗
i (pt,ht) = min

{
xt′

i ,max
{

Q I
i (pt,ht), Ct′

i

}}
, ∀t′ < t (16)

The N-tuple strategy xI∗(pt , ht) = (
xI∗

1 (pt , ht), xI∗
2 (pt , ht), · · · , xI∗

N (pt , ht)
)

is an ex post perfect equilibrium of the allocation stage.

Proof. See Appendix A. �
The intuition of Proposition 2 comes from that each bidder only needs to evaluate the trade-off between winning differ-

ent quantities of slots in the allocation stage, leaving the upgrading decision to the assignment stage. At any time t of the 
allocation stage, if a bidder i reduces its reported demand from n to n − 1, then it must be indifferent between winning 
n slots and winning n − 1 slots at pt . It follows that for any n ∈ {1, 2, · · · , K }, assuming all opposing bidders follow the 
same strategy, it is optimal for bidder i to keep demand at n until price reaches vn

i , at which it is indifferent between 
winning n slots and winning n − 1 slots. Since bidders have the chance to upgrade their rankings in the assignment stage, 
the ranking of positions does not play a role in the allocation stage. Each bidder views all positions as homogeneous items 
when choosing its strategy in the allocation stage. Therefore, bidders’ incentives in the allocation stage are similar to the 
bidders’ incentives in the Ausubel (2004) auction, in which sincere bidding by reporting true demand schedules is an ex 
post perfect equilibrium.

Having shown that xI I∗(pt , ht) is an ex post perfect equilibrium of the assignment stage given any outcome {qi, xT
i , δi}N

i=1
from the allocation stage, and that xI∗(pt , ht) is an ex post perfect equilibrium of the allocation stage, I next show that 
given the equilibrium strategy of assignment stage, xI∗

i (pt , ht) also maximizes each bidder i’s ex post payoff in the entire 
auction by selecting the optimal xT ∗

i that maximizes its ex post equilibrium payoff in the assignment stage, which yields 
the following proposition:

Proposition 3. At any time t, given any history ht , each bidder i’s ex post perfect equilibrium strategy in the two-stage ascending clock 
auction is given by

x∗
i (pt,ht) =

{
xI∗

i (pt ,ht) when pt ∈ [p0, pT ]
xI I∗

i (pt ,ht) when pt ∈ [pT ,∞] (17)

in which pT is the market clearing price that satisfies 
∑

i xI∗
i (pt , ht) > K for all t < T and 

∑
i xI∗

i (pT , hT ) ≤ K . The N-tuple strategy 
x∗(pt , ht) = (

x∗
1(pt , ht), x∗

2(pt , ht), · · · , x∗
N (pt , ht)

)
is an ex post perfect equilibrium of the two-stage ascending clock auction.

Proof. See Appendix A. �
Proposition 3 demonstrates that sincere bidding by all bidders through reporting true marginal value schedules is an 

ex post perfect equilibrium in the two-stage ascending clock auction. It follows that the equilibrium outcome is always 
efficient: the two-stage ascending clock auction always assigns more positions and higher ranked positions to bidders with 
higher marginal values. Given the sincere bidding equilibrium and the payment rules (7) and (10), it is straightforward to 
see that the two-stage ascending clock auction yields the VCG outcome under pure private values.

Corollary 1. The two-stage ascending clock auction dynamically implements the VCG outcome in an ex post perfect equilibrium under 
pure private values.
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The intuition behind the outcome equivalence of the two-stage ascending clock auction and the VCG mechanism is 
the follows. In the VCG mechanism, each winning bidder pays the total externalities it imposes on all opponents. Under the 
position auction setting, this total externalities can be decomposed into two components. First, each winning bidder imposes 
externalities on its opponents by depriving a number of slots from its opponents. If a winning bidder did not participate in 
the auction, some of its opponents would have won more slots. Second, each winning bidder imposes externalities on its 
opponents by depriving higher ranked positions from its opponents. If a winning bidder did not participate in the auction, 
some of its opponents would have won higher ranked positions. In the two-stage ascending clock auction, the payment rule 
in the allocation stage captures the first type of externalities, while the payment rule in the assignment stage captures the 
second type of externalities. In the allocation stage, the payment rule (7) ensures that each bidder pays the value of clicks 
associated with the positions it deprives from opponents before upgrading, evaluated at the highest losing bid for each unit 
of position. In the assignment stage, the payment rule (10) ensures that each bidder pays the value of extra clicks associated 
with the higher rankings it deprives from opponents, evaluated at the highest losing bid for each ranking. Therefore, the 
two-stage ascending clock auction replicates the VCG outcome in equilibrium.

Note that in the special case when each bidder only demands a single unit of position, i.e., vi = (v1
i , 0, 0, · · · , 0) for all i, 

the two-stage ascending clock auction breaks down to the generalized English auction, in which each bidder drops out at its 
true value v1

i in an ex post perfect equilibrium, consistent with the result in Edelman et al. (2007). In the special case when 
all positions have identical click-through rates, i.e., α1 = α2 = · · · = αK , the two-stage ascending clock auction breaks down 
to the Ausubel (2004) auction, in which each bidder reports its true demand schedule in an ex post perfect equilibrium, 
consistent with the result in Ausubel (2004). Therefore, the two-stage ascending clock auction nests the generalized English 
auction and the Ausubel (2004) auction as two special cases. It generalizes the outcome equivalence between the generalized 
English auction and the VCG position auction into the multi-unit demand setting and generalizes the outcome equivalence 
between the Ausubel (2004) auction and the multi-unit Vickrey auction into the position auction setting.

The two-stage ascending clock auction has desirable incentive properties in the following senses. First, each bidder’s 
equilibrium strategy does not depend on the distribution of opposing bidders’ values. Bidders do not need to worry about 
ex post regret under any realization of opposing bidders’ values. Second, each bidder’s equilibrium strategy is robust under 
any click-through rate profile, including an extended setting where the click-through rate of each position depends on the 
number of advertisements that the same bidder has placed above that position.

Corollary 2. Consider an extended setting where the click-through rate of each position depends on the number of positions that the 
same bidder has above that position. Under this extended setting, sincere bidding by all bidders is still an ex post perfect equilibrium of 
the two-stage ascending clock auction, but this equilibrium can be inefficient.

The robustness of sincere bidding equilibrium under this extended setting comes from the fact that all payments are per-
click payments in the two-stage ascending clock auction. When a bidder decides whether to reduce demand in the auction, 
it only needs to consider whether its marginal value per click exceeds the price per click of the extra clicks associated with 
an additional slot or a higher ranking, regardless of whether the number of extra clicks depends on the number of positions 
it already wins. The number of clicks associated with each position does not enter each bidder’s strategic consideration 
problem. Sincere bidding is an ex post equilibrium strategy under any click-through rate profile.

Note that the two-stage ascending clock auction loses its efficiency properties when the click-through rate of each 
position depends on its rank relative to the same bidder’s other advertisements. To see why this is the case, consider 
an example with 2 positions and 2 bidders, i and j. The click-through rate of Position 1 is 200. The click-through rate of 
Position 2 is 150 if it’s the first position assigned to a bidder, while the click-through rate of Position 2 is 100 if it’s the 
second position assigned to a bidder. Suppose (v1

i , v
2
i ) = (2, 1.1) and (v1

j , v
2
j ) = (1, 0). Bidder j’s equilibrium strategy is to 

reduce demand to 0 at pt = 1, since it is unwilling to pay more than $1 per click for any position. Similarly, bidder i’s 
equilibrium strategy is to keep demand at 2 units until pt = 1.1, since it has a strictly positive payoff per click from both 
positions until price reaches $1.1. Both positions are assigned to bidder i in an ex post equilibrium, yielding a total surplus 
of 2 ×200 +1.1 ×100 = 510. In an alternative outcome where Position 1 is assigned to bidder i and Position 2 is assigned to 
bidder j, the total surplus is 2 × 200 + 1 × 150 = 550. Therefore, the sincere bidding equilibrium is no longer efficient under 
this extended setting. This loss of efficiency comes from the fact that under the per-click payment rule, bidders are unable 
to incorporate diminishing marginal number of clicks from winning additional positions into their bidding strategies. How 
to design an efficient auction when the click-through rate of each advertisement depends on the number of advertisements 
the same bidder has already placed is an open question for future research.

While sincere bidding is an ex post equilibrium strategy in the two-stage ascending clock auction, it is not a dominant 
strategy or an obviously dominant strategy defined in Li (2017).20 Consider the following example with 3 positions and 2 
bidders, i and j. Bidder i’s marginal value profile is given by (v1

i , v
2
i , v

3
i ) = (5, 1, 0). The click-through rate profile is given 

by C T R = (101, 1, 1). Suppose that at time t in the assignment stage, pt = 0.5, bidder i demands 2 slots and bidder j
demands 1 slot. Suppose bidder j’s strategy is to keep demand at 1 when bidder i demand 2 slots and to reduce demand 

20 Obvious dominance implies dominance, so showing that sincere bidding is not a dominant strategy is sufficient for proving it’s not an obviously 
dominant strategy.
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to 0 immediately after bidder i reduces demand by any amount. If bidder i plays a deviating strategy by reducing demand 
from 2 to 1 immediately at pt = 0.5, it will win position 1 and 3 and pay $0.5 × 100 = $50 upgrading fee. If bidder i bids 
sincerely by keeping demand at 2 until clock price reaches its true marginal value, pt′ = 1, where t′ > t , it will still win 
position 1 and 3, but pay a higher upgrading fee of $1 × 100 = $100. Therefore, there exists opposing bidder’s strategy 
under which sincere bidding does not maximize bidder i’s ex post payoff. Ex post perfect equilibrium is the appropriate 
equilibrium concept for the two-stage ascending clock auction.21

6. Conclusions

Previous literature on position auctions has restricted attention to single-unit demand models. However, bidders may 
have value over placing multiple advertisements in the same sponsored advertisement list. This is especially true for 
multi-product suppliers selling differentiated products in online marketplaces and for business chains providing services 
at different locations in online booking platforms. This paper constructs an efficient dynamic position auction in a multi-
unit demand setting. The proposed auction implements the VCG outcome in an ex post perfect equilibrium under pure 
private values.

One implication of this paper is that the VCG auction can be generalized into the multi-unit demand setting, while the 
commonly-used GSP auction has no direct generalization with multi-unit demand bidders. The next highest bid payment 
rule in the standard GSP auction is likely to cause efficiency loss under the multi-unit demand setting, as bidders can have 
strategic incentives to avoid paying their own bids on lower-ranked positions for higher-ranked positions. Therefore, this 
paper adds to the literature that favors the VCG auction over the GSP auction for its better adaptability under environments 
outside Edelman et al. (2007), such as incomplete information and unknown click-through rates (Gomes and Sweeney, 2014; 
Varian and Harris, 2014).

Another implication of this paper is that, under the special structure of position auctions, a single clock is sufficient 
for allocating multiple differentiated positions efficiently to multi-unit demand bidders. This result echoes the literature 
that recognizes the simplicity of GSP and VCG position auctions in the single-unit demand setting22 (Milgrom, 2010) and 
demonstrates that the existence of efficient position auctions with single-dimensional bids does not rely on the single-unit 
demand assumption. The fact that only a single clock is sufficient for allocating heterogeneous positions is driven by a 
special feature of position auctions: the heterogeneity across positions can be represented in a single-dimensional attribute, 
click-through rates. That is, click-through rate is the only attribute that bidders care about for any position in the auction. 
A bidder’s value for any position can be calculated by scaling its marginal value per click from an additional advertisement 
by the click-through rate of the position. This feature reduces the dimensionality of the allocation problem and enables the 
auctioneer to use a single clock to assign multiple positions. The single-dimensional clock price reflects the price of each 
click, not the price of any specific position. It follows that a single clock is sufficient for allocating heterogeneous positions 
efficiently.

There are a few potential future research directions relevant to this paper. First, prior literature has pointed out the anal-
ogy between position auctions and two-sided matching markets while restricting attention to one-to-one matching markets 
(Edelman et al., 2007; Johnson, 2013). In practice, two-sided many-to-one matching has become increasingly common in 
many two-sided platforms, such as carpool matching on mobile ride apps. A natural extension of this paper is to explore 
the possibility of using position auction-like mechanisms to improve match surplus and revenue in two-sided many-to-one 
matching markets.

Second, prior literature has studied position auctions with budget constraints (Ashlagi et al., 2010) while restricting 
bidders to have single-unit demand. Another potential extension of this paper is to introduce budget constraints to the 
model and allow bidders to allocate budget over multiple slots.

Appendix A

Proof of Proposition 1. At the beginning of assignment stage, the lowest ranked K −∑N
j=1 xT

j ≥ 0 slots are assigned to those 
bidders who receive slots under the rationing rule. Only the top ranked 

∑N
j=1 xT

j slots are considered in the assignment 
problem. For each bidder i with xT

i > 0, the default rankings associated with these xT
i units is given by 

∑N
j=1 xT

j , 
∑N

j=1 xT
j −

1, · · · , 
∑N

j=1 xT
j − xT

i + 1. That is, bidder i is guaranteed to win at worst the 
∑N

j=1 xT
j -th position for its lowest ranked slot 

among its top xT
i slots, at worst the (

∑N
j=1 xT

j − 1)-th position for its second lowest ranked slot among its top xT
i slots, 

etc. For any n ∈ {1, 2, · · · , xT
i }, the default ranking of bidder i’s n-th highest ranked slot among its top xT

i slots is given by ∑N
j=1 xT

j − xT
i + n.

21 This is not unique to the setting of position auctions with multi-unit demands. In both Ausubel (2004) auction and generalized English auction, sincere 
bidding is an ex post equilibrium strategy but not a dominant strategy or an obviously dominant strategy.
22 In standard GSP and VCG position auctions with single-unit demand bidders, only single-dimensional bids are required to allocate K differentiated 

positions, while K -dimensional bids are required to allocate K heterogeneous items in a standard VCG mechanism under more general settings.
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Consider the strategy of any active bidder i at any time t in the assignment stage. Suppose bidder i’s current reported 
demand is given by n and the ranking of the lowest unassigned position is given by r. At time t , bidder i needs to decide 
whether to reduce demand now and get the r-th position as its n-th highest ranked slot among its top xT

i slots, or to keep 
demand at n in order to further upgrade its n-th highest ranked slot to r − 1. Note that bidder i will be able to win position 
r − 1 at an upgrading fee of b per click if another bidder reduces demand at price b. In equilibrium, assuming all opponents 
are following the same strategy, bidder i should be indifferent between winning position r − 1 as its n-th position with an 
upgrading fee b per click for the extra αr−1 −αr clicks and winning position r as its n-th position, which gives the following 
equilibrium condition:

αr−1 vn
i − (αr−1 − αr)b − P I I

i,n,r − P I
i,n = αr vn

i − P I I
i,n,r − P I

i,n (18)

in which P I I
i,n,r is the upgrading fee of moving bidder i’s n-th highest position from its default ranking of 

∑N
j=1 xT

j −xT
i +n at 

time T to its new default ranking of r at time t . P I
i,n is bidder i’s payment for winning its n-th highest slot in the allocation 

stage. Note that bidder i has already upgraded the ranking of its n-th position to rank r at time t when the current lowest 
unassigned position is r. Therefore, the existing upgrading fee P I I

i,n,r and the allocation stage payment P I
i,n are sunk costs 

at time t . Bidder i only needs to decide whether to further upgrade its n-th position given the current clock price. For any 
n ∈ {1, 2, · · · , xT

i }, for any r ∈ {1, 2, · · · , 
∑N

j=1 xT
j }, given any history ht , the equilibrium condition can always be simplified 

to

αr−1 vn
i − (αr−1 − αr)b = αr vn

i (19)

which gives b = vn
i .

Therefore, assuming all opponents are following the same strategy, at any time t , given any history ht , bidder i can 
always maximize its ex post payoff at the assignment stage by keeping its reported demand at n until the clock price 
reaches vn

i , for all n ∈ {1, 2, · · · , xT
i }. Define strategy Q I I

i (pt , ht) as follows:

Q I I
i (pt,ht) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xT
i if pt ∈ [pT , v

xT
i

i )

xT
i − 1 if pt ∈ [v

xT
i

i , v
xT

i −1
i )

xT
i − 2 if pt ∈ [v

xT
i −1

i , v
xT

i −2
i )

· · ·
1 if pt ∈ [v2

i , v1
i )

0 if pt ∈ [v1
i ,∞)

(20)

At any time t in the assignment stage, bidder i’s ex post perfect equilibrium strategy xI I∗
i (pt , ht) is to follow Q I I

i (pt , ht), 
subject to the constraints posed by the monotonic activity rule. Hence, each bidder i’s ex post perfect equilibrium bidding 
strategy in the assignment stage is given by

xI I∗
i (pt ,ht) = min

{
xt′

i , Q I I
i (pt ,ht)

}
, ∀t′ < t � (21)

Proof of Proposition 2. For any bidder i, at any time t such that i has a strictly positive demand at n, given any history 
up to t , bidder i’s problem is to decide whether to reduce demand below n at the current clock price pt . Suppose bidder 
i keeps demand to be xi(pt , ht) = n, then there is a positive probability that 

∑
j �=i x j(pt , ht) <

∑
j �=i x j(pt−ε , ht−ε) for some 

arbitrarily small ε and 
∑

j �=i x j(pt , ht) < K occurs at time t , making bidder i clinch some units at price pt . Bidder i needs to 
ensure that its ex post payoff per click from winning an n-th unit at the current clock price pt is positive, i.e., vn

i − pt ≥ 0. 
Therefore, at any time of the auction, for any n ∈ {1, 2, · · · , K }, it is optimal for bidder i to keep demand at n until price 
reaches vn

i , the value from receiving a click on its n-th advertisement. Assuming all opponents follow the same strategy, 
then this strategy maximizes bidder i’s ex post payoff at the end of the allocation stage given any history ht . Define strategy 
Q I

i (pt , ht) as follows:

Q I
i (pt,ht) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K if pt ∈ [p0, v K
i )

K − 1 if pt ∈ [v K
i , v K−1

i )

K − 2 if pt ∈ [v K−1
i , v K−2

i )

· · ·
1 if pt ∈ [v2

i , v1
i )

0 if pt ∈ [v1,∞)

(22)
i
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At any time t in the allocation stage, each bidder i’s ex post perfect equilibrium strategy is to follow Q I
i (pt , ht), subject to 

the constraints that all bidders must bid monotonically, and bidders cannot reduce demand below their already clinched 
units. Hence, each bidder i’s ex post perfect equilibrium strategy in the allocation stage is given by

xI∗
i (pt,ht) = min

{
xt′

i ,max{Q I
i (pt ,ht), Ct′

i }
}
, ∀t′ < t � (23)

Proof of Proposition 3. The proof of Proposition 1 shows that for each bidder i, given any outcome {qi, xT
i , δi}N

i=1 from the 
allocation stage, assuming all opponents follow the same equilibrium strategy, xI I∗

i (pt , ht) always maximizes bidder i’s ex 
post payoff at the end of assignment stage. Moreover, given any outcome {qi, xT

i , δi}N
i=1, each bidder’s equilibrium strategy 

xI I∗
i (pt , ht) in the assignment stage depends only on its own final demand xT

i and does not depend on any other information 
contained in {qi, xT

i , δi}N
i=1. It only leaves to prove that given correct expectation about the assignment stage, each bidder 

i’s equilibrium strategy xI∗
i (pt , ht) in the allocation stage yields an optimal final demand xT ∗

i that maximizes bidder i’s final 
ex post payoff at the end of the two-stage auction. Assuming all of bidder i’s opponents follow strategy xI∗

j (pt , ht) in the 
allocation stage and follow strategy xI I∗

j (pt , ht) in the assignment stage, I next show that deviating from xI∗
i (pt , ht) in the 

allocation stage can only hurt bidder i’s final ex post payoff at the end of the assignment stage.
For any n ∈ {1, 2, · · · , K }, if bidder i reports xi(pt , ht) < n when pt < vn

i in the allocation stage, then there is a positive 
probability that bidder i gets fewer than n slots at the end of the allocation stage while it could have clinched an n-th slot 
at price pt < vn

i , earning a positive payoff per click from this slot. There is nothing that bidder i can do in the assignment 
stage to compensate for this loss, as it is impossible to win additional units of advertising slots in the assignment stage. 
On the other hand, if bidder i reports xi(pt , ht) ≥ n when pt > vn

i , there is a positive probability that bidder i clinches 
an n-th slot at pt > vn

i , earning a negative payoff per click. There is nothing that bidder i can do in the assignment stage 
to compensate for this loss, as the best thing that bidder i can do is to not to upgrade this slot from its default ranking. 
Therefore, the equilibrium strategy xI∗

i (pt , ht) always yields the optimal xT ∗
i for bidder i at the end of allocation stage.

Since each bidder’s equilibrium strategy xI I∗
i (pt , ht) maximizes its ex post payoff given any final demand xT

i from the 
allocation stage, deviating from xI∗

i (pt , ht) in the allocation stage and getting a quantity different from xT ∗
i can only reduce 

bidder i’s final ex post payoff. xI∗
i (pt , ht) not only maximizes bidder i’s ex post payoff of the allocation stage but also 

maximizes bidder i’s ex post payoff of the entire auction by selecting the optimal final demand xT ∗
i for the assignment 

stage. Hence, each bidder i’s ex post perfect equilibrium bidding strategy in the two-stage ascending clock auction can be 
expressed as

x∗
i (pt,ht) =

{
xI∗

i (pt ,ht) when pt ∈ [p0, pT ]
xI I∗

i (pt ,ht) when pt ∈ [pT ,∞] (24)

where pT is the market clearing price that marks the end of the allocation stage, i.e., 
∑

i xi(pt , ht) > K for all t < T , and ∑
i xi(pt , ht) ≤ K for all t ≥ T . �

References

Ashlagi, I., Braverman, M., Hassidim, A., Lavi, R., Tennenholtz, M., 2010. Position auctions with budgets: existence and uniqueness. B. E. J. Theor. Econ. 10 
(1), 20.

Athey, S., Ellison, G., 2011. Position auctions with consumer search. Q. J. Econ. 126 (3), 1213–1270.
Ausubel, L.M., 2004. An efficient ascending-bid auction for multiple objects. Am. Econ. Rev. 94 (5), 1452–1475.
Ausubel, L.M., 2006. An efficient dynamic auction for heterogeneous commodities. Am. Econ. Rev. 96 (3), 602–629.
Ausubel, L.M., Cramton, P., Pycia, M., Rostek, M., Weretka, M., 2014. Demand reduction and inefficiency in multi-unit auctions. Rev. Econ. Stud. 81 (4), 

1366–1400.
Baranov, O., 2018. An efficient ascending auction for private valuations. J. Econ. Theory 177, 495–517.
Bikhchandani, S., Ostroy, J.M., 2006. Ascending price Vickrey auctions. Games Econ. Behav. 55, 215–241.
Chen, Y., He, C., 2011. Paid placement: advertising and search on the Internet. Econ. J. 121, 309–328.
Clarke, E., 1971. Multipart pricing of public goods. Public Choice 8, 19–33.
de Vries, S., Schummer, J., Vohra, R.V., 2007. On ascending Vickrey auctions for heterogeneous objects. J. Econ. Theory 132, 95–118.
Edelman, B., Ostrovsky, M., Schwarz, M., 2007. Internet advertising and the generalized second-price auction: selling billions of dollars worth of keywords. 

Am. Econ. Rev. 97 (1), 242–259.
Edelman, B., Schwarz, M., 2010. Optimal auction design and equilibrium selection in sponsored search auctions. Am. Econ. Rev. 100 (2), 597–602.
Goldman, M., Rao, J., 2014. Experiments as Instruments: heterogeneous position effects in sponsored search auctions. Working Paper.
Gomes, R., Sweeney, K., 2014. Bayes-Nash equilibria of the generalized second-price auction. Games Econ. Behav. 86, 421–437.
Groves, T., 1973. Incentives in teams. Econometrica 41, 617–631.
Gul, F., Stacchetti, E., 2000. The English auction with differentiated commodities. J. Econ. Theory 92, 66–95.
Jeziorski, P., Segal, I., 2015. What makes them click: empirical analysis of consumer demand for search advertising. Am. Econ. J. Microecon. 7 (3), 24–53.
Johnson, T.R., 2013. Matching through position auctions. J. Econ. Theory 148, 1700–1713.
Kominers, S.D., 2009. Dynamic position auctions with consumer search. In: AAIM 2009: Algorithm Aspects in Information and Management, pp. 240–250.
Li, S., 2017. Obviously strategy-proof mechanisms. Am. Econ. Rev. 107 (11), 3257–3287.
Milgrom, P.R., 2010. Simplified mechanisms with an application to sponsored-search auctions. Games Econ. Behav. 70 (1), 62–70.
Mishra, D., Parkes, D., 2007. Ascending price Vickrey auctions for general valuations. J. Econ. Theory 132, 335–366.
192

http://refhub.elsevier.com/S0899-8256(21)00032-4/bibCC5BC1605EF92697A677F89EFCAE409Cs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibCC5BC1605EF92697A677F89EFCAE409Cs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib0A0BF02F3A5807DF652277ABBD1070F8s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib110D8EC51093E071850419A860E292A0s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibB364FEA92F8FD453654A7FD4A8529B35s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibB73F5BA4BE0EE6A848375090E3EB79A0s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibB73F5BA4BE0EE6A848375090E3EB79A0s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibA5DCEE9F950CE9641CA0548645EA2A94s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib4DDEAC7AD7623F48CCDE23FB263ED1A0s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib0806DE474FC3DBB037F68D7E26982D9Fs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibFC9E5A5B6258C157E7DC31762B2460F3s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibD47035AE84F3FD6E5A71392CE54F4D2Ds1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibECB34F43AF0A7EB96DA8ADD3469B3A4Ds1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibECB34F43AF0A7EB96DA8ADD3469B3A4Ds1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib3967397BACE5BE524288DE1E55539132s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib5ECE98C0DCE179204BFB021242D834BBs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibBD9AEB62DB5A69FFFE9CA6A9643157DBs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib3BD6A492A6EFA018BAF950305D6D111As1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib27D95A2FD3E689B72D3EC89A44B60E04s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib9DFBA6BC1B3CD29C7002CD9687A5F826s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib62EC5A031B48ADD6FF8AB037BF7A0D61s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibC31587C89466DBB547BF5D77D4C43FDEs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib0306E609D5060EAD4A095CD38153B7C4s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibB455125116923630BE2BBAACDE3E5B5Ds1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibCE1ACB1B58595A17A5982D933A206872s1


H. Yan Games and Economic Behavior 127 (2021) 179–193
Okamoto, N., 2018. An efficient ascending-bid auction for multiple objects: comment. Am. Econ. Rev. 108 (2), 555–560.
Sun, N., Yang, Z., 2014. An efficient and incentive compatible dynamic auction for multiple complements. J. Polit. Econ. 122 (2), 422–466.
Varian, H.R., 2007. Position auctions. Int. J. Ind. Organ. 25 (6), 1163–1178.
Varian, H.R., Harris, C., 2014. The VCG auction in theory and practice. Am. Econ. Rev. Pap. Proc. 104 (5), 442–445.
Vickrey, V., 1961. Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16 (1), 8–37.
Yenmez, M.B., 2014. Pricing in position auctions and online advertising. Econ. Theory 55 (1), 243–256.
193

http://refhub.elsevier.com/S0899-8256(21)00032-4/bib818A2F88339733D2721A3401EDDB04E6s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib214E779DC2B3BA7FAD05EDE54D44698Fs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibD87A55AB88CA6AE783AE712EB837B83Cs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibF224ECB61887AE063A8EEC823DA5D89Cs1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bibB97562F8BD5C710AE0FCCFF689399086s1
http://refhub.elsevier.com/S0899-8256(21)00032-4/bib7DC42C705B82AA253E95589A58FBBABBs1

	Position auctions with multi-unit demands
	1 Introduction
	2 Related literature
	3 Model
	4 An efficient two-stage ascending clock auction
	4.1 Allocation stage: an Ausubel auction with differentiated units
	4.2 An illustrative example of the allocation stage
	4.3 Assignment stage: a generalized English auction with multi-unit demands
	4.4 An illustrative example of the assignment stage

	5 Equilibrium analysis
	6 Conclusions
	References


