Position Auctions with Interdependent Values

Haomin Yan

May 30, 2019

Outline

Introduction

Model

Main Results: Efficiency

Main Results: Revenue

Conclusions

Introduction

An Example of Sponsored Search Advertising

Save Up to \$300 on Any iPhone - Limited Time at Verizon
(Ad www.verizonwireless.com/ $>$

Standard Framework of Position Auctions

Standard Framework (Edelman et al. 2007; Varian 2007)

- K advertising positions; $N>K$ bidders.
- Positions differ in click-through-rate (CTR): $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{K}$ are exogenous and commonly known.
- Advertisers differ in value per click, v_{i}.
- Advertiser i 's total value of the k-th highest position is $\alpha_{k} \times v_{i}$.

Three Position Auction Formats

- Generalized Second Price Auctions (GSP): $p_{(k)}=\alpha_{k} b_{(k+1)}$
- Vickrey-Clarke-Groves Auctions (VCG): $p_{(k)}=\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}$
- Generalized English Auctions (GEA): ascending clock auction, $p_{(k)}=\alpha_{k} b_{(k+1)}$

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.
- Each advertiser's value per click: $v_{i}=(\text { Prob of Purchase upon Click })_{i} \times(\text { Profit per Sale })_{i}$
- There exists a common component in all advertisers' values $\left(v_{1}, v_{2}, \cdots, v_{N}\right)$ that is driven by aggregate demand.

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.
- Each advertiser's value per click: $v_{i}=(\text { Prob of Purchase upon Click })_{i} \times(\text { Profit per Sale })_{i}$
- There exists a common component in all advertisers' values ($v_{1}, v_{2}, \cdots, v_{N}$) that is driven by aggregate demand.
- Suppose each advertiser receives a private signal x_{i} that estimates how likely consumers are going to purchase its product after click.
- Both x_{i} and other advertisers' signals x_{-i} are informative about v_{i}.

Contribution

Research Questions

In an interdependent values model:

- Are GSP, VCG and GEA still efficient? If not, how to improve efficiency?
- How do the revenues of GSP, VCG and GEA compare?
- What is the optimal (revenue-maximizing) auction? How do the revenues of GSP, VCG and GEA compare to the optimal revenue?

Main Contribution

- Extend the study of three standard position auctions into interdependent values.
- Propose two new auction mechanisms to improve efficiency and revenue.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

- GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

- Both GSP and VCG can be inefficient. GEA is always efficient.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

- GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

- Both GSP and VCG can be inefficient. GEA is always efficient.
- I propose a modification of GSP and VCG by allowing bidders to condition their bids on positions.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

- GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

- Both GSP and VCG can be inefficient. GEA is always efficient.
- I propose a modification of GSP and VCG by allowing bidders to condition their bids on positions.
- Both K-dimensional GSP and K-dimensional VCG are efficient.

Summary of Results: Revenue

Previous Literature - Under Complete Information:

- Revenue ranking: GSP \geq VCG $=$ GEA

This Paper - Under Interdependent Values:

- Revenue ranking: GEA \geq K-dimensional VCG $=$ K-dimensional GSP

Summary of Results: Revenue

Previous Literature - Under Complete Information:

- Revenue ranking: GSP \geq VCG $=$ GEA

This Paper - Under Interdependent Values:

- Revenue ranking: GEA \geq K-dimensional VCG $=$ K-dimensional GSP
- Under independent signals, the GEA, K-dimensional GSP and K-dimensional VCG are revenue equivalent and implement the optimal revenue subject to no reserve price.

Model

Model

- K positions; $N>K$ bidders with single-unit demands.
- Click-through-rate (CTR) $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{K}$: exogenous and commonly known.

Model

- K positions; $N>K$ bidders with single-unit demands.
- Click-through-rate (CTR) $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{K}$: exogenous and commonly known.
- Each bidder receives a private signal $x_{i} \in[0, \bar{x}]$ that is informative of its value per click.
- The signals $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ are distributed according to joint distribution $F\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ with density $f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$.

Model

- K positions; $N>K$ bidders with single-unit demands.
- Click-through-rate (CTR) $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{K}$: exogenous and commonly known.
- Each bidder receives a private signal $x_{i} \in[0, \bar{x}]$ that is informative of its value per click.
- The signals $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ are distributed according to joint distribution $F\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ with density $f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$.
- Bidder i's value per click is $v_{i}\left(x_{i}, x_{-i}\right) . v_{i}(.,$.$) symmetric across$ bidders.
- Quasilinear utility:

$$
U_{i}\left(x_{i}, x_{-i}, k\right)=\alpha_{k} v_{i}\left(x_{i}, x_{-i}\right)-p^{(k)}
$$

Assumptions

- A1 $v\left(x_{i}, x_{-i}\right)$ is nonnegative, continuous and strictly increasing in x_{i}, nondecreasing in x_{j}.

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}>0, \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{j}} \geq 0, \quad \forall j \neq i
$$

Assumptions

- A1 $v\left(x_{i}, x_{-i}\right)$ is nonnegative, continuous and strictly increasing in x_{i}, nondecreasing in x_{j}.

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}>0, \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{j}} \geq 0, \quad \forall j \neq i
$$

- A2 $v\left(x_{i}, x_{-i}\right)$ is symmetric in its last $N-1$ arguments.

Assumptions

- A1 $v\left(x_{i}, x_{-i}\right)$ is nonnegative, continuous and strictly increasing in x_{i}, nondecreasing in x_{j}.

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}>0, \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{j}} \geq 0, \quad \forall j \neq i
$$

- A2 $v\left(x_{i}, x_{-i}\right)$ is symmetric in its last $N-1$ arguments.
- A3 $v\left(x_{i}, x_{-i}\right)$ satisfies the single-crossing condition:

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}} \geq \frac{\partial v_{j}\left(x_{j}, x_{-j}\right)}{\partial x_{i}} \quad \forall i, \quad \forall j \neq i
$$

Assumptions

- A1 $v\left(x_{i}, x_{-i}\right)$ is nonnegative, continuous and strictly increasing in x_{i}, nondecreasing in x_{j}.

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}>0, \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{j}} \geq 0, \quad \forall j \neq i
$$

- A2 $v\left(x_{i}, x_{-i}\right)$ is symmetric in its last $N-1$ arguments.
- A3 $v\left(x_{i}, x_{-i}\right)$ satisfies the single-crossing condition:

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}} \geq \frac{\partial v_{j}\left(x_{j}, x_{-j}\right)}{\partial x_{i}} \quad \forall i, \quad \forall j \neq i
$$

- A4 $f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ is symmetric in all arguments.

Assumptions

- A1 $v\left(x_{i}, x_{-i}\right)$ is nonnegative, continuous and strictly increasing in x_{i}, nondecreasing in x_{j}.

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}>0, \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{j}} \geq 0, \quad \forall j \neq i
$$

- A2 $v\left(x_{i}, x_{-i}\right)$ is symmetric in its last $N-1$ arguments.
- A3 $v\left(x_{i}, x_{-i}\right)$ satisfies the single-crossing condition:

$$
\frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}} \geq \frac{\partial v_{j}\left(x_{j}, x_{-j}\right)}{\partial x_{i}} \quad \forall i, \quad \forall j \neq i
$$

- A4 $f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ is symmetric in all arguments.
- A5 The signals $x_{1}, x_{2}, \cdots, x_{N}$ are affiliated: For any x and x^{\prime} :

$$
f\left(x \vee x^{\prime}\right) f\left(x \wedge x^{\prime}\right) \geq f(x) f\left(x^{\prime}\right)
$$

The Generalized Winner's Curse and Efficiency

Definition 1
A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- X : random variable of own signal x_{i}.
- Y_{k} : the k-th highest signal among x_{-i}.

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- X : random variable of own signal x_{i}.
- Y_{k} : the k-th highest signal among x_{-i}.
- $v^{k}\left(x_{i}, y_{k}\right)$: expected value per click conditional on realizations of X and Y_{k} :

$$
v^{k}\left(x_{i}, y_{k}\right)=E\left[v\left(x_{i}, x_{-i}\right) \mid X=x_{i}, Y_{k}=y_{k}\right]
$$

- $v^{k}\left(x_{i}, x_{i}\right)$: expected value per click conditional on receiving a signal just high enough to win position k.

The Generalized Winner's Curse and Efficiency

Definition 1
A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- X : random variable of own signal x_{i}.
- Y_{k} : the k-th highest signal among x_{-i}.
- $v^{k}\left(x_{i}, y_{k}\right)$: expected value per click conditional on realizations of X and Y_{k} :

$$
v^{k}\left(x_{i}, y_{k}\right)=E\left[v\left(x_{i}, x_{-i}\right) \mid X=x_{i}, Y_{k}=y_{k}\right]
$$

- $v^{k}\left(x_{i}, x_{i}\right)$: expected value per click conditional on receiving a signal just high enough to win position k.
- The Generalized Winner's Curse: For all $k \in\{1,2, \cdots, K\}$, $v^{k}\left(x_{i}, x_{i}\right) \leq v^{k+1}\left(x_{i}, x_{i}\right)$.

Main Results: Efficiency

One-dimensional GSP and VCG

- Each bidder i submits a bid $b_{i} \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}$.
- VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}$.

One-dimensional GSP and VCG

- Each bidder i submits a bid $b_{i} \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}$.
- VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$:

	A	B	C
b_{i}	10	8	3
Allocation	Position 1	Position 2	\emptyset
GSP Payment			

One-dimensional GSP and VCG

- Each bidder i submits a bid $b_{i} \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}$.
- VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$:

	A	B	C
b_{i}	10	8	3
Allocation	Position 1	Position 2	\emptyset
GSP Payment	$300 \times 8=2400$	$100 \times 3=300$	0
VCG Payment			

One-dimensional GSP and VCG

- Each bidder i submits a bid $b_{i} \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}$.
- VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$:

	A	B	C
b_{i}	10	8	3
Allocation	Position 1	Position 2	\emptyset
GSP Payment	$300 \times 8=2400$	$100 \times 3=300$	0
VCG Payment	$200 \times 8+100 \times 3=1900$	$100 \times 3=300$	0

Inefficiency of One-dimensional GSP and VCG

Proposition 1
Given any value function $v\left(x_{i}, x_{-i}\right)$ satisfying assumptions A1-A3, the GSP auction can be inefficient.

Proposition 2

For any non-trivially interdependent value function $v\left(x_{i}, x_{-i}\right)$ satisfying assumptions A1-A3 and $\frac{\partial v_{i}}{\partial x_{j}} \neq 0$ for $i \neq j$, the VCG auction can be inefficient.

Sources of Inefficiency in One-dimensional Auctions

Equilibrium Condition:
$g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}-\Pi_{2} \mid X=x_{i}, Y_{1}=x_{i}\right]+g_{2}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{2} \mid X=x_{i}, Y_{2}=x_{i}\right]=0$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:

Sources of Inefficiency in One-dimensional Auctions

Equilibrium Condition:
$g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}-\Pi_{2} \mid X=x_{i}, Y_{1}=x_{i}\right]+g_{2}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{2} \mid X=x_{i}, Y_{2}=x_{i}\right]=0$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
- In GSP: When α_{2} is close to α_{1}, position 2 gives similar number of clicks at a much lower price per click.

Sources of Inefficiency in One-dimensional Auctions

Equilibrium Condition:
$g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}-\Pi_{2} \mid X=x_{i}, Y_{1}=x_{i}\right]+g_{2}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{2} \mid X=x_{i}, Y_{2}=x_{i}\right]=0$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
- In GSP: When α_{2} is close to α_{1}, position 2 gives similar number of clicks at a much lower price per click.
- In both GSP and VCG: $v^{1}\left(x_{i}, x_{i}\right) \leq v^{2}\left(x_{i}, x_{i}\right)$ under the Generalized Winner's Curse.

Sources of Inefficiency in One-dimensional Auctions

Equilibrium Condition:
$g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}-\Pi_{2} \mid X=x_{i}, Y_{1}=x_{i}\right]+g_{2}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{2} \mid X=x_{i}, Y_{2}=x_{i}\right]=0$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
- In GSP: When α_{2} is close to α_{1}, position 2 gives similar number of clicks at a much lower price per click.
- In both GSP and VCG: $v^{1}\left(x_{i}, x_{i}\right) \leq v^{2}\left(x_{i}, x_{i}\right)$ under the Generalized Winner's Curse.
- Bid-shading incentive is stronger as x_{i} gets higher. The differentiated bid-shading incentives across signals leads to non-monotonicity of $\beta\left(x_{i}\right)$.
- Conjecture: Allowing bidders to bid differently for two positions can improve efficiency.

K-dimensional Position Auctions

- Each bidder submits K bids $\left(b_{i}^{1}, b_{i}^{2}, \cdots, b_{i}^{K}\right) \in \mathbb{R}^{\mathbb{K}}$, i.e., a bid for $1^{\text {st }}$ position, a bid for $2^{\text {nd }}$ position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k .
- K-D GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}^{k}$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}^{j}$.

K-dimensional Position Auctions

- Each bidder submits K bids $\left(b_{i}^{1}, b_{i}^{2}, \cdots, b_{i}^{K}\right) \in \mathbb{R}^{\mathbb{K}}$, i.e., a bid for $1^{s t}$ position, a bid for $2^{\text {nd }}$ position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}^{k}$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}^{j}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$

	A	B	C
b_{i}^{1}	10	8	3
b_{i}^{2}	15	12	6
Allocation			

K-dimensional Position Auctions

- Each bidder submits K bids $\left(b_{i}^{1}, b_{i}^{2}, \cdots, b_{i}^{K}\right) \in \mathbb{R}^{\mathbb{K}}$, i.e., a bid for $1^{s t}$ position, a bid for $2^{\text {nd }}$ position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}^{k}$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}^{j}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$

	A	B	C
b_{i}^{1}	10	8	3
b_{i}^{2}	15	12	6
Allocation	Position 1	Position 2	\emptyset
K-D GSP Payment			

K-dimensional Position Auctions

- Each bidder submits K bids $\left(b_{i}^{1}, b_{i}^{2}, \cdots, b_{i}^{K}\right) \in \mathbb{R}^{\mathbb{K}}$, i.e., a bid for $1^{s t}$ position, a bid for $2^{\text {nd }}$ position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}^{k}$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}^{j}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$

	A	B	C
b_{i}^{1}	10	8	3
b_{i}^{2}	15	12	6
Allocation	Position 1	Position 2	\emptyset
K-D GSP Payment	$300 \times 8=2400$	$100 \times 6=600$	0
K-D VCG Payment			

K-dimensional Position Auctions

- Each bidder submits K bids $\left(b_{i}^{1}, b_{i}^{2}, \cdots, b_{i}^{K}\right) \in \mathbb{R}^{\mathbb{K}}$, i.e., a bid for $1^{s t}$ position, a bid for $2^{\text {nd }}$ position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_{k} b_{(k+1)}^{k}$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) b_{(j+1)}^{j}$.

Example: 3 Advertisers: A, B, and C; 2 positions: $\operatorname{CTR}=(300,100)$

	A	B	C
b_{i}^{1}	10	8	3
b_{i}^{2}	15	12	6
Allocation	Position 1	Position 2	\emptyset
K-D GSP Payment	$300 \times 8=2400$	$100 \times 6=600$	0
K-D VCG Payment	$200 \times 8+100 \times 6=2200$	$100 \times 6=600$	0

Equilibria of K-dimensional GSP and VCG

Proposition 3 (BNE of K-D VCG)

The unique symmetric BNE in K-D VCG is characterized as follows: proof For any position $k \in\{1,2, \cdots, K\}$:

$$
\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)
$$

Equilibria of K-dimensional GSP and VCG

Proposition 3 (BNE of K-D VCG)

The unique symmetric BNE in K-D VCG is characterized as follows:
\qquad

For any position $k \in\{1,2, \cdots, K\}$:

$$
\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)
$$

Proposition 4 (BNE of K-D GSP)

The unique symmetric BNE in K-D GSP is characterized as follows: proof For the last position K:

$$
\beta_{K}\left(x_{i}\right)=v^{K}\left(x_{i}, x_{i}\right)
$$

For position $k \in\{1,2, \cdots, K-1\}$:
$\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)-\frac{\alpha_{k+1}}{\alpha_{k}}\left[v^{k}\left(x_{i}, x_{i}\right)-\int_{0}^{x_{i}} \beta_{k+1}\left(y_{k+1}\right) d G_{k+1}\left(y_{k+1} \mid X=x_{i}, Y_{k}=x_{i}\right)\right]$

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with $K=2$ positions and $N=3$ bidders, with CTR normalized to $\left(1, \alpha_{2}\right)$. $\alpha_{2} \in[0,1] . x_{i}$ i.i.d. on $U[0,1] . v_{i}$ is given by

$$
v_{i}=v\left(x_{i}, x_{j}, x_{k}\right)=\lambda x_{i}+\frac{1-\lambda}{2}\left(x_{j}+x_{k}\right) \quad \lambda \in\left[\frac{1}{3}, 1\right]
$$

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with $K=2$ positions and $N=3$ bidders, with CTR normalized to $\left(1, \alpha_{2}\right)$. $\alpha_{2} \in[0,1] . x_{i}$ i.i.d. on $U[0,1] . v_{i}$ is given by

$$
v_{i}=v\left(x_{i}, x_{j}, x_{k}\right)=\lambda x_{i}+\frac{1-\lambda}{2}\left(x_{j}+x_{k}\right) \quad \lambda \in\left[\frac{1}{3}, 1\right]
$$

λ represents the degree of interdependency in bidders' values:

- $\lambda=1$: independent pure private values
- $\lambda=1 / 3$: common values

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with $K=2$ positions and $N=3$ bidders, with CTR normalized to $\left(1, \alpha_{2}\right)$. $\alpha_{2} \in[0,1] . x_{i}$ i.i.d. on $U[0,1] . v_{i}$ is given by

$$
v_{i}=v\left(x_{i}, x_{j}, x_{k}\right)=\lambda x_{i}+\frac{1-\lambda}{2}\left(x_{j}+x_{k}\right) \quad \lambda \in\left[\frac{1}{3}, 1\right]
$$

λ represents the degree of interdependency in bidders' values:

- $\lambda=1$: independent pure private values
- $\lambda=1 / 3$: common values
α_{2} represents the relative quality of position 2 compared to position 1 :
- $\alpha_{2}=1$: identical items
- $\alpha_{2}=0$: single item

Example: Equilibrium of K-D VCG with $\alpha_{2}=0.75$

Figure 1: Equilibrium Bidding Strategies for Positions 1 and 2 in K-dimensional VCG Auction

Example: Equilibrium of K-D GSP with $\alpha_{2}=0.75$

Figure 2: Equilibrium Bidding Strategies for Positions 1 and 2 in K-dimensional GSP Auction

Example: Equilibrium of K-D Auctions with $\alpha_{2}=0.75$

Figure 3: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction

Example: Equilibrium of K-D Auctions with $\alpha_{2}=0.25$

Figure 4: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction

Generalized English Auction (GEA)

- Ascending clock showing current price; bidders drop out at any time.
- Auction ends when only one bidder is left.
- Drop-out prices: $p_{N} \leq p_{N-1} \leq \cdots \leq p_{2}$
- The remaining bidder wins Position 1 and pays $\alpha_{1} \times p_{2}$, the last drop-out bidder wins Position 2 and pays $\alpha_{2} \times p_{3}$, etc.

Generalized English Auction (GEA)

- Ascending clock showing current price; bidders drop out at any time.
- Auction ends when only one bidder is left.
- Drop-out prices: $p_{N} \leq p_{N-1} \leq \cdots \leq p_{2}$
- The remaining bidder wins Position 1 and pays $\alpha_{1} \times p_{2}$, the last drop-out bidder wins Position 2 and pays $\alpha_{2} \times p_{3}$, etc.

Example: 3 Advertisers: A, B, and C; 2 positions: $\mathrm{CTR}=(300,100)$

Ascending Clock Price

Ex-post Equilibrium of GEA
 Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history AND the number of remaining bidders. P proof

Ex-post Equilibrium of GEA

Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history AND the number of remaining bidders. - proof

- No one has dropped out: $n=N$
$b_{N}^{*}\left(x_{i}\right)=v^{(K)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(N-K)})$

Ex-post Equilibrium of GEA

Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history AND the number of remaining bidders: proof

- No one has dropped out: $n=N$

$$
b_{N}^{*}\left(x_{i}\right)=v^{(K)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(N-K)})
$$

- More bidders than positions are left: $(K+1) \leq n \leq(N-1)$

$$
b_{n}^{*}\left(x_{i} \mid p_{N}, \cdots, p_{n+1}\right)=v^{(K)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(n-K)}, \underbrace{y_{n}, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text { lowest signals }})
$$

Ex-post Equilibrium of GEA

Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history AND the number of remaining bidders. Proof

- No one has dropped out: $n=N$

$$
b_{N}^{*}\left(x_{i}\right)=v^{(k)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(N-K)})
$$

- More bidders than positions are left: $(K+1) \leq n \leq(N-1)$

$$
b_{n}^{*}\left(x_{i} \mid p_{N}, \cdots, p_{n+1}\right)=v^{(K)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(n-K)}, \underbrace{y_{n}, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text { lowest signals }})
$$

- Fewer bidders than positions are left: $n \leq K$

$$
\begin{aligned}
& b_{n}^{*}\left(x_{i} \mid p_{N}, \cdots, p_{n+1}\right)=v^{(n-1)}(x_{i}, x_{i}, \underbrace{y_{n}, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text { lowest signals }})- \\
& \frac{\alpha_{n}}{\alpha_{n-1}}[v^{(n-1)}(x_{i}, x_{i}, \underbrace{y_{n}, y_{n+1} \cdots, y_{N-1}})-p_{n+1}]
\end{aligned}
$$

Main Results: Revenue

Revenue Comparison

Proposition 6

For any value function $v\left(x_{i}, x_{-i}\right)$ and distribution of signals $F\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ that satisfy assumptions A1-A5,

$$
R^{G E A} \geq R^{K-V C G}=R^{K-G S P}
$$

Revenue Comparison

Proposition 6

For any value function $v\left(x_{i}, x_{-i}\right)$ and distribution of signals $F\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ that satisfy assumptions A1-A5,

$$
R^{G E A} \geq R^{K-V C G}=R^{K-G S P}
$$

Corollary 1

When bidders' signals are independently and identically distributed, for any value function $v\left(x_{i}, x_{-i}\right)$ that satisfies A1-A3,

$$
R^{G E A}=R^{K-V C G}=R^{K-G S P}
$$

Characterization of the Optimal Position Auction

Proposition 7

Given a profile of bidders' signals (x_{i}, x_{-i}), suppose the bidders receive positions in the rank ordering of their signals under allocation rule $q^{*}\left(x_{i}, x_{-i}\right)$. Suppose also that the payment rule is given by

$$
p_{i}^{*}\left(x_{i}, x_{-i}\right)=q_{i}^{*}\left(x_{i}, x_{-i}\right) v_{i}\left(x_{i}, x_{-i}\right)-\int_{0}^{x_{i}} q_{i}^{*}\left(s, x_{-i}\right) \frac{\partial v_{i}\left(s, x_{-i}\right)}{\partial s} d s
$$

Then $\left(q^{*}, p^{*}\right)$ is an optimal position auction among all the ex-post IC and IR mechanisms subject to no reserve price. When bidders have independent signals, this auction is optimal among all Bayesian IC and IR mechanisms.

Characterization of the Optimal Position Auction

Proposition 7

Given a profile of bidders' signals (x_{i}, x_{-i}), suppose the bidders receive positions in the rank ordering of their signals under allocation rule $q^{*}\left(x_{i}, x_{-i}\right)$. Suppose also that the payment rule is given by

$$
p_{i}^{*}\left(x_{i}, x_{-i}\right)=q_{i}^{*}\left(x_{i}, x_{-i}\right) v_{i}\left(x_{i}, x_{-i}\right)-\int_{0}^{x_{i}} q_{i}^{*}\left(s, x_{-i}\right) \frac{\partial v_{i}\left(s, x_{-i}\right)}{\partial s} d s
$$

Then $\left(q^{*}, p^{*}\right)$ is an optimal position auction among all the ex-post IC and IR mechanisms subject to no reserve price. When bidders have independent signals, this auction is optimal among all Bayesian IC and IR mechanisms.

Proposition 8

When bidders have independent signals, the optimal revenue can be practically implemented by GEA, K-dimensional GSP auction, and K-dimensional VCG auction. Proof

Conclusions

Summary of Results

		VCG	GEA
1-dimensional	Inefficient	Inefficient	Efficient
K-dimensional	Efficient Revenue: $2^{\text {nd }}(*)$	Efficient Revenue: $2^{\text {nd }}(*)$	$\left.\begin{array}{l}\text { Revenue: } \\ \\ \hline\end{array}{ }^{\text {Rt }}\right)$

$(*)$: Revenue equivalent under independent signals. This is also the optimal revenue subject to no reserve price.

Summary of Results

			GEA
1-dimensional	Inefficient	Inefficient	Efficient
K-dimensional	Efficient Revenue: $2^{\text {nd }}(*)$	Efficient Revenue: $2^{\text {nd }}(*)$	Revenue: ${ }^{\text {st }}(*)$

$(*)$: Revenue equivalent under independent signals. This is also the optimal revenue subject to no reserve price.
Conclusions

- Allowing bidders to condition bids on positions improves efficiency and revenue.
- There is a trade-off between simplicity v.s. efficiency and revenue in auction design.

Future Research Directions

Position Auctions with Multi-unit Demands (working paper)

- Bidders may demand multiple ad slots under the same keyword.
- This paper extends the study of auction theory into vertically differentiated items with multi-unit demands.
- I propose a VCG auction and a two-stage ascending clock auction that combines the features of "Clinching" Auction in Ausubel (2004) and Generalized English Auction to allocate positions efficiently.

Future Research Directions

Position Auctions with Multi-unit Demands (working paper)

- Bidders may demand multiple ad slots under the same keyword.
- This paper extends the study of auction theory into vertically differentiated items with multi-unit demands.
- I propose a VCG auction and a two-stage ascending clock auction that combines the features of "Clinching" Auction in Ausubel (2004) and Generalized English Auction to allocate positions efficiently.

Test Theoretical Results Empirically and Experimentally

- Test the efficiency and revenue properties using experimental data
- Quantify the revenue effect from adopting a multi-dimensional bidding language in GSP and VCG

Thank You!

Lemma 1: Efficiency Condition

Lemma 1

A one-dimensional position auction can be efficient if and only if there exists a symmetric and strictly monotonic equilibrium bidding strategy $\beta\left(x_{i}\right)$.

Lemma 2: BNE of 1-D GSP

Lemma 2

In the one-dimensional GSP auction with 2 positions, if a monotonic Bayesian equilibrium bidding strategy $\beta\left(x_{i}\right)$ exists, then $b^{*}=\beta\left(x_{i}\right)$ maximizes

$$
\begin{aligned}
\Pi\left(b_{i} \mid x_{i}\right)= & \int_{0}^{\beta^{-1}\left(b_{i}\right)} \int_{0}^{y_{1}} \alpha_{1}\left[v^{1,2}\left(x_{i}, y_{1}, y_{2}\right)-\beta\left(y_{1}\right)\right] g_{i}^{2,1}\left(y_{2}, y_{1} \mid x_{i}\right) d y_{2} d y_{1} \\
& +\int_{\beta^{-1}\left(b_{i}\right)}^{\bar{x}_{i}} \int_{0}^{\beta^{-1}\left(b_{i}\right)} \alpha_{2}\left[v^{1,2}\left(x_{i}, y_{1}, y_{2}\right)-\beta\left(y_{2}\right)\right] g_{i}^{2,1}\left(y_{2}, y_{1} \mid x_{i}\right) d y_{2} d y_{1}
\end{aligned}
$$

Take FOC yields
For all $x_{i} \in[0, \bar{x}], \beta\left(x_{i}\right)$ satisfies the Volterra equation

$$
\begin{equation*}
\beta\left(x_{i}\right)=\frac{g_{1}\left(x_{i} \mid x_{i}\right)\left[\left(\alpha_{1}-\alpha_{2}\right) v^{1}\left(x_{i}, x_{i}\right)+\alpha_{2} \int_{0}^{x_{i}} \beta\left(y_{2}\right) g_{2 \mid 1}\left(y_{2} \mid x_{i}, x_{i}\right) d y_{2}\right]+g_{2}\left(x_{i} \mid x_{i}\right) \alpha_{2} v^{2}\left(x_{i}, x_{i}\right)}{\alpha_{1} g_{1}\left(x_{i} \mid x_{i}\right)+\alpha_{2} g_{2}\left(x_{i} \mid x_{i}\right)} \tag{10}
\end{equation*}
$$

Proof of Proposition 1: Inefficiency of 1-D GSP

In a one-dimensional GSP auction with two positions, the equilibrium condition can be written as

$$
g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}^{G}-\Pi_{2}^{G} \mid X=x_{i}, Y_{1}=x_{i}\right]+g_{2}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{2}^{G} \mid X=x_{i}, Y_{2}=x_{i}\right]=0
$$

When $x_{i} \rightarrow \bar{x}, g_{2}\left(x_{i} \mid x_{i}\right) \rightarrow 0$, then $g_{1}\left(x_{i} \mid x_{i}\right) E\left[\Pi_{1}^{G}-\Pi_{2}^{G} \mid X=x_{i}, Y_{1}=x_{i}\right]=0$. Suppose the $\operatorname{BNE} \beta^{G}\left(x_{i}\right)$ is strictly increasing. Then

$$
\begin{aligned}
& \lim _{\alpha_{2} \rightarrow \alpha_{1}} E\left[\Pi_{1}^{G}-\Pi_{2}^{G} \mid X=x_{i}, Y_{1}=x_{i}\right] \\
= & \alpha_{1} \int_{0}^{x_{i}}\left(\beta^{G}\left(y_{2}\right)-\beta^{G}\left(x_{i}\right)\right) g_{2 \mid 1}\left(y_{2} \mid x_{i}, x_{i}\right) d y_{2}<0
\end{aligned}
$$

So there always exists $\left(\alpha_{1}, \alpha_{2}\right)$ under which $F O C<0$ around x_{i} close to \bar{x}, contradicting the assumption that $\beta^{G}\left(x_{i}\right)$ is an equilibrium.

Lemma 3: BNE of 1-D VCG

Lemma 3

In the one-dimensional VCG auction with 2 positions, if a monotonic Bayesian equilibrium bidding strategy $\beta\left(x_{i}\right)$ exists, then $b^{*}=\beta\left(x_{i}\right)$ maximizes

$$
\begin{aligned}
\Pi\left(b_{i} \mid x_{i}\right)= & \int_{0}^{\beta^{-1}\left(b_{i}\right)} \int_{0}^{y_{1}}\left\{\alpha_{1}\left[v^{1,2}\left(x_{i}, y_{1}, y_{2}\right)-\beta\left(y_{1}\right)\right]+\alpha_{2}\left[\beta\left(y_{1}\right)-\beta\left(y_{2}\right)\right]\right\} g_{i}^{2,1}\left(y_{2}, y_{1} \mid x_{i}\right) d y_{2} d y_{1} \\
& +\int_{\beta^{-1}\left(b_{i}\right)}^{\bar{x}_{i}} \int_{0}^{\beta^{-1}\left(b_{i}\right)} \alpha_{2}\left[v^{1,2}\left(x_{i}, y_{1}, y_{2}\right)-\beta\left(y_{2}\right)\right] g_{i}^{2,1}\left(y_{2}, y_{1} \mid x_{i}\right) d y_{2} d y_{1}
\end{aligned}
$$

The FOC implies $\beta\left(x_{i}\right)$ is characterized by

$$
\beta\left(x_{i}\right)=\frac{g_{1}\left(x_{i} \mid x_{i}\right)\left(\alpha_{1}-\alpha_{2}\right) v^{1}\left(x_{i}, x_{i}\right)+g_{2}\left(x_{i} \mid x_{i}\right) \alpha_{2} v^{2}\left(x_{i}, x_{i}\right)}{g_{1}\left(x_{i} \mid x_{i}\right)\left(\alpha_{1}-\alpha_{2}\right)+g_{2}\left(x_{i} \mid x_{i}\right) \alpha_{2}}
$$

Proof of Proposition 2: Inefficiency of 1-D VCG

$$
\beta^{V}\left(x_{i}\right)=\gamma\left(x_{i} ; \alpha_{1}, \alpha_{2}\right) v^{1}\left(x_{i}, x_{i}\right)+\left(1-\gamma\left(x_{i} ; \alpha_{1}, \alpha_{2}\right)\right) v^{2}\left(x_{i}, x_{i}\right)
$$

Take derivative of $\beta\left(x_{i}\right)=\gamma\left(x_{i}\right) v^{1}\left(x_{i}, x_{i}\right)+\left(1-\gamma\left(x_{i}\right)\right) v^{2}\left(x_{i}, x_{i}\right)$ with respect to x_{i} :

$$
\frac{d \beta^{\vee}\left(x_{i}\right)}{d x_{i}}=\underbrace{\gamma\left(x_{i}\right)\left[\frac{\partial v^{1}\left(x_{i}, x_{i}\right)}{\partial x_{i}}\right]+\left(1-\gamma\left(x_{i}\right)\right)\left[\frac{\partial v^{2}\left(x_{i}, x_{i}\right)}{\partial x_{i}}\right]}_{\text {bid-increasing incentive from higher expected values }}
$$

$$
+\underbrace{\frac{\partial \gamma\left(x_{i}\right)}{\partial x_{i}}\left[v^{1}\left(x_{i}, x_{i}\right)-v^{2}\left(x_{i}, x_{i}\right)\right]}
$$

bid-shading incentive from the "winner's curse"
$\frac{\partial \gamma\left(x_{i}\right)}{\partial x_{i}} \rightarrow \infty$ when $x_{i} \rightarrow \bar{x}$ and $\alpha_{2} \rightarrow \alpha_{1}$, so $\frac{d \beta^{\vee}\left(x_{i}\right)}{d x_{i}}$ must be negative under some $\left(\alpha_{1}, \alpha_{2}\right)$.

Proof of Proposition 3

Suppose all of bidder i 's opponents adopt $\beta(x)$. The FOC implies that in equilibrium, a bidder should be indifferent between position k and $k+1$ when $Y_{k}=x_{i}$:

$$
\begin{aligned}
& E\left[\alpha_{k} v_{i}-\sum_{j=k}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) \beta_{j}\left(Y_{j}\right) \mid X=x_{i}, Y_{k}=x_{i}\right] \\
= & E\left[\alpha_{k+1} v_{i}-\sum_{j=k+1}^{K}\left(\alpha_{j}-\alpha_{j+1}\right) \beta_{j}\left(Y_{j}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]
\end{aligned}
$$

which yields

$$
\begin{aligned}
& \alpha_{k} v^{k}\left(x_{i}, x_{i}\right)-\left(\alpha_{k}-\alpha_{k+1}\right) \underbrace{E\left[\beta_{k}\left(Y_{k}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]}_{\beta_{k}\left(x_{i}\right)}=\alpha_{k+1} v^{k}\left(x_{i}, x_{i}\right) \\
& E\left[\beta_{k}\left(Y_{k}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]=\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)
\end{aligned}
$$

Therefore, the equilibrium bidding strategy is given by

$$
b_{i}^{k *}=\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)
$$

Proof of Proposition 4

Suppose all of bidder i's opponents adopt $\beta(x)$. The FOC of i 's objective function implies that in equilibrium, a bidder should be indifferent between position k and $k+1$ when $Y_{k}=x_{i}$:
$E\left[\alpha_{k}\left(v_{i}-\beta_{k}\left(Y_{k}\right)\right) \mid X=x_{i}, Y_{k}=x_{i}\right]=E\left[\alpha_{k+1}\left(v_{i}-\beta_{k+1}\left(Y_{k+1}\right)\right) \mid X=x_{i}, Y_{k}=x_{i}\right]$
which yields

$$
\begin{aligned}
& \alpha_{k}(v^{k}\left(x_{i}, x_{i}\right)-\underbrace{E\left[\beta_{k}\left(Y_{k}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]}_{\beta_{k}\left(x_{i}\right)}) \\
= & \alpha_{k+1}\left(v^{k}\left(x_{i}, x_{i}\right)-E\left[\beta_{k+1}\left(Y_{k+1}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]\right)
\end{aligned}
$$

Therefore, the equilibrium bidding strategy is given by

$$
b_{i}^{k *}=\beta_{k}\left(x_{i}\right)=v^{k}\left(x_{i}, x_{i}\right)-\frac{\alpha_{k+1}}{\alpha_{k}}\left[v^{k}\left(x_{i}, x_{i}\right)-E\left[\beta_{k+1}\left(Y_{k+1}\right) \mid X=x_{i}, Y_{k}=x_{i}\right]\right]
$$

Proof of Proposition 5

- When all N bidders are "in", suppose all the opposing bidders adopt strategy b_{N}^{*}, bidder i will not drop out until the expected payoff from the last position K falls below zero.
- i wins position K by dropping out at p only if $(N-K)$ lowest signal bidders drop out simultaneously, which implies $Y_{K}=Y_{K+1}=\cdots=Y_{N-1}=y_{K}$. i's expected payoff is

$$
\alpha_{K} v^{(K)}\left(x_{i}, y_{K}, \cdots, y_{K}\right)-\alpha_{K} v^{(K)}\left(y_{K}, y_{K}, \cdots, y_{K}\right) \geq 0 \quad \text { iff } \quad x_{i} \geq y_{K}
$$

So bidder i 's optimal drop-out price is $p=v^{(K)}\left(x_{i}, x_{i}, \cdots, x_{i}\right)$.

- When $(N-n)$ bidders have dropped out, but $n \geq K+1$ bidders are still in the auction, we just need to replace the lowest $(N-n)$ signals by the revealed signals. i's optimal drop-out price is

$$
v^{(K)}(x_{i}, \underbrace{x_{i}, \cdots, x_{i}}_{(n-K)}, \underbrace{y_{n}, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text { lowest signals }})
$$

Proof of Proposition 5

- When only $n \leq K$ bidders left in the auction, a bidder should be indifferent between getting the current lowest position n at price p_{n+1} and an upper position $(n-1)$ at a higher price b in equilibrium.
- The lowest value remaining opposing bidder with signal y_{n-1} drops out at b defined by b_{n}^{*} :

$$
b=v^{(n-1)}\left(y_{n-1}, y_{n-1}, \cdots, y_{N}\right)-\frac{\alpha_{n}}{\alpha_{n-1}}\left[v^{(n-1)}\left(y_{n-1}, y_{n-1}, \cdots, y_{N}\right)-p_{n+1}\right]
$$

- The expected payoff from winning $(n-1)$ is
$\Pi_{n-1}=\alpha_{n-1}\left[v^{(n-1)}\left(x_{i}, y_{n-1}, y_{n}, \cdots, y_{N}\right)-b\right]$.
- The expected payoff from winning n is
$\Pi_{n}=\alpha_{n}\left[v^{(n-1)}\left(x_{i}, y_{n-1}, y_{n} \cdots, y_{N}\right)-p_{n+1}\right]$.
- $\Pi_{n-1}-\Pi_{n} \geq 0$ if and only if
$\left(\alpha_{n-1}-\alpha_{n}\right)\left[v^{(n-1)}\left(x_{i}, y_{n-1}, y_{n} \cdots, y_{N}\right)-v^{(n-1)}\left(y_{n-1}, y_{n-1}, y_{n} \cdots, y_{N}\right)\right] \geq 0$ So b_{n}^{*} is best response bid for i when $n \leq K$ given all opponents adopt b^{*}.

Proof of Proposition 6: $R^{E} \geq R^{V}$

For the last position K, the expected prices in GEA and K-dimensional VCG are given by

$$
\begin{aligned}
& E\left[p^{E,(K)}\right]=E\left[v^{(K)}\left(Y_{K}, Y_{K} ; Y_{K+1}, Y_{K+2}, \cdots, Y_{N-1}\right) \mid\left\{Y_{K-1}>X>Y_{K}\right\}\right] \\
& E\left[p^{V,(K)}\right]=E\left[v^{K}\left(Y_{K}, Y_{K}\right) \mid\left\{Y_{K-1}>X>Y_{K}\right\}\right]
\end{aligned}
$$

For any position $k \in[1, K-1]$, the expected prices are given by
$E\left[p^{E,(k)}-p^{E,(k+1)}\right]=\left(\alpha_{k}-\alpha_{k+1}\right) E\left[v^{(k)}\left(Y_{k}, Y_{k} ; Y_{k+1}, . ., Y_{N-1}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right]$
$E\left[p^{V,(k)}-p^{V,(k+1)}\right]=\left(\alpha_{k}-\alpha_{k+1}\right) E\left[\nu^{k}\left(Y_{k}, Y_{k}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right]$
Apply Linkage Principle twice gives $E\left[p^{E,(k)}\right] \geq E\left[p^{V,(k)}\right]$ for all k.

Proof of Proposition 6: $R^{V}=R^{G}$ (Method 1)

For the last position K, the expected prices in K-dimensional VCG and GSP are given by

$$
\begin{aligned}
& E\left[p^{V,(K)}\right]=\alpha_{K} E\left[v^{K}\left(Y_{K}, Y_{K}\right) \mid\left\{Y_{K-1}>X>Y_{K}\right\}\right] \\
& E\left[p^{G,(K)}\right]=\alpha_{K} E\left[v^{K}\left(Y_{K}, Y_{K}\right) \mid\left\{Y_{K-1}>X>Y_{K}\right\}\right]
\end{aligned}
$$

For any position $k \in[1, K-1]$, the expected prices are given by

$$
\begin{aligned}
E\left[p^{V,(k)}\right] & =\left(\alpha_{k}-\alpha_{k+1}\right) E\left[\beta_{k}^{V}\left(Y_{k}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right]+E\left[p^{V,(k+1)}\right] \\
& =\left(\alpha_{k}-\alpha_{k+1}\right) E\left[v^{k}\left(Y_{k}, Y_{k}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right]+E\left[p^{V,(k+1)}\right] \\
E\left[p^{G,(k)}\right] & =\alpha_{k} E\left[\beta_{k}^{G}\left(Y_{k}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right] \\
& =\alpha_{k} E\left[\left.v^{k}\left(Y_{k}, Y_{k}\right)-\left[\frac{\alpha_{k+1}}{\alpha_{k}} v^{k}\left(Y_{k}, Y_{k}\right)-E\left[\beta_{k+1}^{G}\left(Y_{k+1}\right)\right]\right] \right\rvert\,\left\{Y_{k-1}>X>Y_{k}\right\}\right] \\
& =\left(\alpha_{k}-\alpha_{k+1}\right) E\left[v^{k}\left(Y_{k}, Y_{k}\right) \mid\left\{Y_{k-1}>X>Y_{k}\right\}\right]+E\left[p^{G,(k+1)}\right]
\end{aligned}
$$

Therefore, $E\left[p^{V,(k)}\right]=E\left[p^{G,(k)}\right]$ for all k.

Proof of Proposition 6: $R^{V}=R^{G}$ (Method 2)

With $K=2$ positions, the expected payment of a bidder with signal x_{i} in K-D VCG and GSP are given by

$$
\begin{aligned}
m^{V}\left(x_{i}\right)= & \operatorname{Pr}\left(x_{i} \geq Y_{1}\right) E[\left(\alpha_{1}-\alpha_{2}\right) \underbrace{v^{1}\left(Y_{1}, Y_{1}\right)}_{\beta_{1}^{V}\left(Y_{1}\right)}+\alpha_{2} \underbrace{v^{2}\left(Y_{2}, Y_{2}\right)}_{\beta_{2}^{V}\left(Y_{2}\right)} \mid x_{i} \geq Y_{1}] \\
& +\operatorname{Pr}\left(Y_{2} \leq x_{i}<Y_{1}\right) E[\alpha_{2} \underbrace{v^{2}\left(Y_{2}, Y_{2}\right)}_{\beta_{2}^{V}\left(Y_{2}\right)} \mid Y_{2} \leq x_{i}<Y_{1}] \\
m^{G}\left(x_{i}\right)= & \operatorname{Pr}\left(x_{i} \geq Y_{1}\right) E[\alpha_{1}\{\left.\underbrace{\left\{v^{1}\left(Y_{1}, Y_{1}\right)-\frac{\alpha_{2}}{\alpha_{1}} v^{1}\left(Y_{1}, Y_{1}\right)+\frac{\alpha_{2}}{\alpha_{1}} E\left[v^{2}\left(Y_{2}, Y_{2}\right) \mid Y_{1}\right]\right\}}_{\beta_{1}^{G}\left(Y_{1}\right)} \right\rvert\, x_{i} \geq Y_{1}] \\
& +\operatorname{Pr}\left(Y_{2} \leq x_{i}<Y_{1}\right) E[\alpha_{2} \underbrace{v^{2}\left(Y_{2}, Y_{2}\right)}_{\beta_{2}^{G}\left(Y_{2}\right)} \mid Y_{2} \leq x_{i}<Y_{1}]
\end{aligned}
$$

According to the Law of Iterated Expectations, $E\left[E\left[v^{2}\left(Y_{2}, Y_{2}\right) \mid Y_{1}\right] \mid Y_{1} \leq x_{i}\right]=E\left[v^{2}\left(Y_{2}, Y_{2}\right) \mid Y_{1} \leq x_{i}\right]$
So $m^{V}\left(x_{i}\right)=m^{G}\left(x_{i}\right)$. Similar argument applies for any $K \geq 2$.

Proof of Proposition 7

Lemma 4
A position auction mechanism (q, p) is ex post IC and IR if and only if for all i and $\left(x_{i}, x_{-i}\right), q_{i}\left(x_{i}, x_{-i}\right)$ is weakly increasing in x_{i}, and

$$
\begin{gathered}
u_{i}\left(x_{i}, x_{-i}\right)=u_{i}\left(0, x_{-i}\right)+\int_{0}^{x_{i}}\left[\frac{\partial v_{i}\left(s, x_{-i}\right)}{\partial s}\right] q_{i}\left(s, x_{-i}\right) d s \text { for all } x_{-i} \\
u_{i}\left(0, x_{-i}\right) \geq 0 \text { for all } x_{-i}
\end{gathered}
$$

Lemma 5

In any ex post IC and IR mechanism, the ex ante expected revenue is given by

$$
\begin{aligned}
E R= & \int_{x} \sum_{i}\left\{q_{i}\left(x_{i}, x_{-i}\right)\left\{v_{i}\left(x_{i}, x_{-i}\right)-\frac{1-F_{i}\left(x_{i} \mid x_{-i}\right)}{f_{i}\left(x_{i} \mid x_{-i}\right)} \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}\right\}\right\} f(x) d x \\
& -\int_{x_{-i}} \sum_{i} u_{i}\left(0, x_{-i}\right) f_{-i \mid 0}\left(x_{-i} \mid 0\right) d x_{-i}
\end{aligned}
$$

Proof of Proposition 7

Lemma 6

A position auction mechanism (q, p) is Bayesian IC and IR if for every i, for any report x, the expected CTR $q_{i}\left(x_{i}, x_{-i}\right)$ is weakly increasing in x_{i}, and

$$
\begin{gathered}
U_{i}\left(x_{i}\right)=U_{i}(0)+\int_{x_{-i}} \int_{0}^{x_{i}}\left[\frac{\partial v_{i}\left(s, x_{-i}\right)}{\partial s}\right] q_{i}\left(s, x_{-i}\right) d s f_{-i}\left(x_{-i}\right) d x_{-i} \\
U_{i}(0) \geq 0
\end{gathered}
$$

Lemma 7

For any Bayesian IC and IR mechanism that satisfy the conditions in lemma 6 , the ex ante expected revenue is given by

$$
E R=\int_{x} \sum_{i}\left\{q_{i}\left(x_{i}, x_{-i}\right)\left\{v_{i}\left(x_{i}, x_{-i}\right)-\frac{1-F_{i}\left(x_{i}\right)}{f_{i}\left(x_{i}\right)} \frac{\partial v_{i}\left(x_{i}, x_{-i}\right)}{\partial x_{i}}\right\}\right\} f(x) d x-\sum_{i} U_{i}(0)
$$

Proof of Proposition 8

- Substitute $\hat{x}^{k}\left(x_{-i}\right)=\hat{X}^{k}\left(x_{-i}\right)$ into the optimal auction $\left(q^{*}, p^{*}\right)$ defined in Proposition 7, it is trivial that $q^{*}=q^{V}$.
- Substitute the allocation rule $q^{V}=q^{*}$ into the payment rule

$$
p_{i}^{*}\left(x_{i}, x_{-i}\right)=q_{i}^{*}\left(x_{i}, x_{-i}\right) v_{i}\left(x_{i}, x_{-i}\right)-\int_{0}^{x_{i}} q_{i}^{*}\left(s, x_{-i}\right) \frac{\partial v_{i}\left(s, x_{-i}\right)}{\partial s} d s
$$

It can be shown that $p_{i}^{*}=p_{i}^{V}$. So $\left(q^{*}, p^{*}\right)$ is equivalent to $\left(q^{V}, p^{V}\right)$ under regularity condition R3.

- The payment of each bidder depends on the entire signal profile in the Generalized-VCG, while it depends only on a subset of bidders' signals in GEA and depends only on each bidder's own signal in K-D GSP and K-D VCG. $R^{\text {Optimal }} \geq R^{G E A} \geq R^{K-V C G}=R^{K-G S P}$ under affiliated signals by Linkage Principle.

