Position Auctions with Interdependent Values

Haomin Yan

May 30, 2019

Haomin Yan

Position Auctions with Interdependent Values

Model

Main Results: Efficiency

Main Results: Revenue

Conclusions

Haomin Yan

Position Auctions with Interdependent Values

Introduction

An Example of Sponsored Search Advertising

iphone						
All	News	Shopping	Images	Videos	More	Settings Tools

About 2,610,000,000 results (0.86 seconds)

iPhone - Apple

Ad www.apple.com/ ▼ Say hello to the future. Learn more and shop now. iPhone X · iPhone 8 · iPhone Upgrade Program

Virgin Mobile® Inner Circle - Unlimited Service for \$1

Ad www.virginmobileusa.com/InnerCircle -

\$1/mo. for 6 Months & Get Unlimited Talk, Text & Data w/ iPhone Purchase. 100% Money Back Guarantee - \$150 Prepaid Card · No Annual Contract · 14-day Guarantee Models: Apple iPhone SE, Apple iPhone 6, Apple iPhone 6s, Apple iPhone 6s Plus Get a \$150 Prepaid Card · Apple iPhone 6 - The Inner Circle Plan Apple iPhone SE - from \$279.99 · Virgin Mobile USA · More *

iPhone X on XFINITY Mobile - Get iPhone X Today - xfinity.com

Ad www.xfinity.com/Mobile ▼ (888) 972-6098 Buy iPhone X With No Line Access Fees & Unlimited Data Only \$45/Line/mo. Unlimited data \$45/line · Keep your phone number · 4G LTE data · Millions of hotspots · Up to 5 lines Models: IPhone X, IPhone 8, IPhone 8 Plus, iPhone 7, IPhone 7 Plus ♀ 4555 Van Buren St, Riverdale Park, M0 · Closed now · Hours ▼

Save Up to \$300 on Any iPhone - Limited Time at Verizon

Ad www.verizonwireless.com/ ▼ Haomin^w Agi Trade In after accoupt credit or AZW.Virtual Gift Gard Bey Emit Bend Values

Standard Framework of Position Auctions

Standard Framework (Edelman et al. 2007; Varian 2007)

- K advertising positions; N > K bidders.
- Positions differ in click-through-rate (CTR): α₁ ≥ α₂ ≥ ··· ≥ α_K are exogenous and commonly known.
- Advertisers differ in value per click, v_i.
- Advertiser *i*'s total value of the *k*-th highest position is $\alpha_k \times v_i$.

Three Position Auction Formats

- Generalized Second Price Auctions (GSP): $p_{(k)} = \alpha_k b_{(k+1)}$
- Vickrey-Clarke-Groves Auctions (VCG): $p_{(k)} = \sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}$
- Generalized English Auctions (GEA): ascending clock auction, p_(k) = α_kb_(k+1)

Haomin Yan

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.
- Each advertiser's value per click: v_i = (Prob of Purchase upon Click)_i × (Profit per Sale)_i
- There exists a common component in all advertisers' values (v₁, v₂, · · · , v_N) that is driven by aggregate demand.

Motivation: Interdependent Values

- Existing literature does not capture the oligopoly competition feature among advertisers.
- Advertisers sell substitutable products in the same market related to the search keyword.
- Each advertiser's value per click: v_i = (Prob of Purchase upon Click)_i × (Profit per Sale)_i
- There exists a common component in all advertisers' values (v₁, v₂, · · · , v_N) that is driven by aggregate demand.
- Suppose each advertiser receives a private signal x_i that estimates how likely consumers are going to purchase its product after click.
- ▶ Both x_i and other advertisers' signals x_{-i} are informative about v_i .

Contribution

Research Questions

In an interdependent values model:

- Are GSP, VCG and GEA still efficient? If not, how to improve efficiency?
- ► How do the revenues of GSP, VCG and GEA compare?
- What is the optimal (revenue-maximizing) auction? How do the revenues of GSP, VCG and GEA compare to the optimal revenue?

Main Contribution

- Extend the study of three standard position auctions into interdependent values.
- Propose two new auction mechanisms to improve efficiency and revenue.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

Both GSP and VCG can be inefficient. GEA is always efficient.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

► GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

- ▶ Both GSP and VCG can be inefficient. GEA is always efficient.
- I propose a modification of GSP and VCG by allowing bidders to condition their bids on positions.

Summary of Results: Efficiency

Previous Literature - Under Complete Information:

► GSP, VCG and GEA are all efficient.

This Paper - Under Interdependent Values:

- Both GSP and VCG can be inefficient. GEA is always efficient.
- I propose a modification of GSP and VCG by allowing bidders to condition their bids on positions.
- ▶ Both K-dimensional GSP and K-dimensional VCG are efficient.

Summary of Results: Revenue

Previous Literature - Under Complete Information:

• Revenue ranking: $GSP \ge VCG = GEA$

This Paper - Under Interdependent Values:

▶ Revenue ranking: GEA ≥ K-dimensional VCG = K-dimensional GSP

Summary of Results: Revenue

Previous Literature - Under Complete Information:

► Revenue ranking: GSP ≥ VCG = GEA

This Paper - Under Interdependent Values:

- ▶ Revenue ranking: GEA ≥ K-dimensional VCG = K-dimensional GSP
- Under independent signals, the GEA, K-dimensional GSP and K-dimensional VCG are revenue equivalent and implement the optimal revenue subject to no reserve price.

- K positions; N > K bidders with single-unit demands.
- Click-through-rate (CTR) α₁ ≥ α₂ ≥ ··· ≥ α_K: exogenous and commonly known.

- K positions; N > K bidders with single-unit demands.
- Click-through-rate (CTR) α₁ ≥ α₂ ≥ ··· ≥ α_K: exogenous and commonly known.
- ► Each bidder receives a private signal x_i ∈ [0, x̄] that is informative of its value per click.
- ► The signals x = (x₁, x₂, · · · , x_N) are distributed according to joint distribution F(x₁, x₂, · · · , x_N) with density f(x₁, x₂, · · · , x_N).

- K positions; N > K bidders with single-unit demands.
- Click-through-rate (CTR) α₁ ≥ α₂ ≥ ··· ≥ α_K: exogenous and commonly known.
- ► Each bidder receives a private signal x_i ∈ [0, x̄] that is informative of its value per click.
- ► The signals x = (x₁, x₂, · · · , x_N) are distributed according to joint distribution F(x₁, x₂, · · · , x_N) with density f(x₁, x₂, · · · , x_N).
- Bidder i's value per click is v_i(x_i, x_{-i}). v_i(.,.) symmetric across bidders.
- Quasilinear utility:

$$U_i(x_i, x_{-i}, k) = \alpha_k v_i(x_i, x_{-i}) - p^{(k)}$$

Assumptions

A1 v(x_i, x_{-i}) is nonnegative, continuous and strictly increasing in x_i, nondecreasing in x_j.

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} > 0, \frac{\partial v_i(x_i, x_{-i})}{\partial x_j} \ge 0, \quad \forall j \neq i$$

Assumptions

A1 v(x_i, x_{-i}) is nonnegative, continuous and strictly increasing in x_i, nondecreasing in x_j.

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} > 0, \frac{\partial v_i(x_i, x_{-i})}{\partial x_j} \ge 0, \quad \forall j \neq i$$

▶ A2 $v(x_i, x_{-i})$ is symmetric in its last N - 1 arguments.

Assumptions

A1 v(x_i, x_{-i}) is nonnegative, continuous and strictly increasing in x_i, nondecreasing in x_j.

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} > 0, \frac{\partial v_i(x_i, x_{-i})}{\partial x_j} \ge 0, \quad \forall j \neq i$$

A2 v(x_i, x_{-i}) is symmetric in its last N - 1 arguments.
 A3 v(x_i, x_{-i}) satisfies the single-crossing condition:

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} \geq \frac{\partial v_j(x_j, x_{-j})}{\partial x_i} \quad \forall i, \quad \forall j \neq i$$

Assumptions

A1 v(x_i, x_{-i}) is nonnegative, continuous and strictly increasing in x_i, nondecreasing in x_j.

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} > 0, \frac{\partial v_i(x_i, x_{-i})}{\partial x_j} \ge 0, \quad \forall j \neq i$$

A2 v(x_i, x_{-i}) is symmetric in its last N - 1 arguments.
 A3 v(x_i, x_{-i}) satisfies the single-crossing condition:

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} \geq \frac{\partial v_j(x_j, x_{-j})}{\partial x_i} \quad \forall i, \quad \forall j \neq i$$

• A4 $f(x_1, x_2, \dots, x_N)$ is symmetric in all arguments.

Assumptions

A1 v(x_i, x_{-i}) is nonnegative, continuous and strictly increasing in x_i, nondecreasing in x_j.

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} > 0, \frac{\partial v_i(x_i, x_{-i})}{\partial x_j} \ge 0, \quad \forall j \neq i$$

▶ A2 $v(x_i, x_{-i})$ is symmetric in its last N - 1 arguments.

• A3 $v(x_i, x_{-i})$ satisfies the single-crossing condition:

$$\frac{\partial v_i(x_i, x_{-i})}{\partial x_i} \geq \frac{\partial v_j(x_j, x_{-j})}{\partial x_i} \quad \forall i, \quad \forall j \neq i$$

• A4 $f(x_1, x_2, \dots, x_N)$ is symmetric in all arguments.

▶ **A5** The signals x_1, x_2, \dots, x_N are affiliated: For any x and x':

$$f(x \lor x')f(x \land x') \ge f(x)f(x')$$

Position Auctions with Interdependent Values

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- ► X: random variable of own signal x_i.
- Y_k : the k-th highest signal among x_{-i} .

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- ► X: random variable of own signal x_i.
- Y_k : the k-th highest signal among x_{-i} .
- v^k(x_i, y_k): expected value per click conditional on realizations of X and Y_k:

$$v^{k}(x_{i}, y_{k}) = E[v(x_{i}, x_{-i})|X = x_{i}, Y_{k} = y_{k}]$$

v^k(x_i, x_i): expected value per click conditional on receiving a signal just high enough to win position k.

The Generalized Winner's Curse and Efficiency

Definition 1

A position auction is efficient if it always assigns positions in the rank ordering of bidders' ex-post values.

Definition 2

- X: random variable of own signal x_i.
- Y_k : the k-th highest signal among x_{-i} .
- v^k(x_i, y_k): expected value per click conditional on realizations of X and Y_k:

$$v^{k}(x_{i}, y_{k}) = E[v(x_{i}, x_{-i})|X = x_{i}, Y_{k} = y_{k}]$$

- v^k(x_i, x_i): expected value per click conditional on receiving a signal just high enough to win position k.
- ▶ The Generalized Winner's Curse: For all $k \in \{1, 2, \dots, K\}$, $v^k(x_i, x_i) \le v^{k+1}(x_i, x_i)$.

Main Results: Efficiency

Main Results: Efficiency

- Each bidder *i* submits a bid $b_i \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}$.
- ► VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}$.

- Each bidder *i* submits a bid $b_i \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}$.
- ► VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100):

	A	В	C
b _i	10	8	3
Allocation	Position 1	Position 2	Ø
GSP Payment			

- Each bidder *i* submits a bid $b_i \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}$.
- ► VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100):

	A	В	С
b _i	10	8	3
Allocation	Position 1	Position 2	Ø
GSP Payment	$300 \times 8 = 2400$	$100\times 3=300$	0
VCG Payment			

- Each bidder *i* submits a bid $b_i \in \mathbb{R}$ that applies for all positions.
- Bidders receive positions in the rank ordering of bids.
- GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}$.
- ► VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}$.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100):

	A	В	С
bi	10	8	3
Allocation	Position 1	Position 2	Ø
GSP Payment	$300 \times 8 = 2400$	$100 \times 3 = 300$	0
VCG Payment	$200 \times 8 + 100 \times 3 = 1900$	$100 \times 3 = 300$	0

Main Results: Efficiency

Inefficiency of One-dimensional GSP and VCG

Proposition 1

Given any value function $v(x_i, x_{-i})$ satisfying assumptions A1-A3, the GSP auction can be inefficient.

Proposition 2

For any non-trivially interdependent value function $v(x_i, x_{-i})$ satisfying assumptions **A1-A3** and $\frac{\partial v_i}{\partial x_j} \neq 0$ for $i \neq j$, the VCG auction can be inefficient.

Main Results: Efficiency

Sources of Inefficiency in One-dimensional Auctions Equilibrium Condition:

$$g_1(x_i|x_i)E\Big[\Pi_1 - \Pi_2\Big|X = x_i, Y_1 = x_i\Big] + g_2(x_i|x_i)E\Big[\Pi_2\Big|X = x_i, Y_2 = x_i\Big] = 0$$

Bidders are restricted to bid the same for position 1 and 2.

Expected payoff from position 1 can be lower than position 2:

Sources of Inefficiency in One-dimensional Auctions Equilibrium Condition:

$$g_1(x_i|x_i)E\Big[\Pi_1 - \Pi_2\Big|X = x_i, Y_1 = x_i\Big] + g_2(x_i|x_i)E\Big[\Pi_2\Big|X = x_i, Y_2 = x_i\Big] = 0$$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
 - In GSP: When α₂ is close to α₁, position 2 gives similar number of clicks at a much lower price per click.

Sources of Inefficiency in One-dimensional Auctions Equilibrium Condition:

$$g_1(x_i|x_i)E\Big[\Pi_1 - \Pi_2\Big|X = x_i, Y_1 = x_i\Big] + g_2(x_i|x_i)E\Big[\Pi_2\Big|X = x_i, Y_2 = x_i\Big] = 0$$

- ▶ Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
 - In GSP: When α₂ is close to α₁, position 2 gives similar number of clicks at a much lower price per click.
 - In both GSP and VCG: v¹(x_i, x_i) ≤ v²(x_i, x_i) under the Generalized Winner's Curse.

Sources of Inefficiency in One-dimensional Auctions Equilibrium Condition:

$$g_1(x_i|x_i)E\Big[\Pi_1 - \Pi_2 \Big| X = x_i, Y_1 = x_i\Big] + g_2(x_i|x_i)E\Big[\Pi_2 \Big| X = x_i, Y_2 = x_i\Big] = 0$$

- Bidders are restricted to bid the same for position 1 and 2.
- Expected payoff from position 1 can be lower than position 2:
 - In GSP: When α₂ is close to α₁, position 2 gives similar number of clicks at a much lower price per click.
 - In both GSP and VCG: v¹(x_i, x_i) ≤ v²(x_i, x_i) under the Generalized Winner's Curse.
- Bid-shading incentive is stronger as x_i gets higher. The differentiated bid-shading incentives across signals leads to non-monotonicity of β(x_i).
- Conjecture: Allowing bidders to bid differently for two positions can improve efficiency.

- ▶ Each bidder submits K bids $(b_i^1, b_i^2, \dots, b_i^K) \in \mathbb{R}^K$, i.e., a bid for 1^{st} position, a bid for 2^{nd} position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}^k$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}^j$.

- ▶ Each bidder submits K bids $(b_i^1, b_i^2, \dots, b_i^K) \in \mathbb{R}^K$, i.e., a bid for 1^{st} position, a bid for 2^{nd} position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}^k$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}^j$.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100)

	A	В	C
b_i^1	10	8	3
b_i^2	15	12	6
Allocation			

- ▶ Each bidder submits K bids $(b_i^1, b_i^2, \dots, b_i^K) \in \mathbb{R}^K$, i.e., a bid for 1^{st} position, a bid for 2^{nd} position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}^k$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}^j$.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100)

	А	В	C
b_i^1	10	8	3
b_i^2	15	12	6
Allocation	Position 1	Position 2	Ø
K-D GSP Payment			

- ▶ Each bidder submits K bids $(b_i^1, b_i^2, \dots, b_i^K) \in \mathbb{R}^K$, i.e., a bid for 1^{st} position, a bid for 2^{nd} position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}^k$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}^j$.

Example:	3 Advertisers:	А, В,	and C; 2 positions:	CTR=(300, 100)	
----------	----------------	-------	---------------------	----------------	--

	А	В	C
b_i^1	10	8	3
b_i^2	15	12	6
Allocation	Position 1	Position 2	Ø
K-D GSP Payment	$300 \times 8 = 2400$	$100 \times 6 = 600$	0
K-D VCG Payment			

- ▶ Each bidder submits K bids $(b_i^1, b_i^2, \dots, b_i^K) \in \mathbb{R}^K$, i.e., a bid for 1^{st} position, a bid for 2^{nd} position, etc.
- Rank all bids for the same position; Assign k to the highest bidder of k among those whose bids do not win a position better than k.
- K-D GSP: The bidder who wins k pays $\alpha_k b_{(k+1)}^k$.
- K-D VCG: The bidder who wins k pays $\sum_{j=k}^{K} (\alpha_j \alpha_{j+1}) b_{(j+1)}^j$.

Example:	3 Advertisers:	А, В,	and C; 2 positions:	CTR=(300, 100)	
----------	----------------	-------	---------------------	----------------	--

	A	В	С
b_i^1	10	8	3
b_i^2	15	12	6
Allocation	Position 1	Position 2	Ø
K-D GSP Payment	$300 \times 8 = 2400$	$100 \times 6 = 600$	0
K-D VCG Payment	$200 \times 8 + 100 \times 6 = 2200$	$100 \times 6 = 600$	0

Equilibria of K-dimensional GSP and VCG Proposition 3 (BNE of K-D VCG)

The unique symmetric BNE in K-D VCG is characterized as follows: For any position $k \in \{1, 2, \dots, K\}$:

$$\beta_k(x_i) = v^k(x_i, x_i)$$

Equilibria of K-dimensional GSP and VCG Proposition 3 (BNE of K-D VCG)

The unique symmetric BNE in K-D VCG is characterized as follows: Proof For any position $k \in \{1, 2, \dots, K\}$:

$$\beta_k(x_i) = v^k(x_i, x_i)$$

Proposition 4 (BNE of K-D GSP)

The unique symmetric BNE in K-D GSP is characterized as follows: **proof** For the last position K:

$$\beta_K(x_i) = v^K(x_i, x_i)$$

For position $k \in \{1, 2, \cdots, K-1\}$:

$$\beta_k(x_i) = v^k(x_i, x_i) - \frac{\alpha_{k+1}}{\alpha_k} \Big[v^k(x_i, x_i) - \int_0^{x_i} \beta_{k+1}(y_{k+1}) dG_{k+1}(y_{k+1} | X = x_i, Y_k = x_i) \Big]$$

Haomin Yan

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with K = 2 positions and N = 3 bidders, with CTR normalized to $(1, \alpha_2)$. $\alpha_2 \in [0, 1]$. x_i i.i.d. on U[0, 1]. v_i is given by

$$v_i = v(x_i, x_j, x_k) = \lambda x_i + rac{1-\lambda}{2}(x_j + x_k) \quad \lambda \in \left[rac{1}{3}, 1
ight]$$

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with K = 2 positions and N = 3 bidders, with CTR normalized to $(1, \alpha_2)$. $\alpha_2 \in [0, 1]$. x_i i.i.d. on U[0, 1]. v_i is given by

$$v_i = v(x_i, x_j, x_k) = \lambda x_i + rac{1-\lambda}{2}(x_j + x_k) \quad \lambda \in \left[rac{1}{3}, 1
ight]$$

 λ represents the degree of interdependency in bidders' values:

- $\lambda = 1$: independent pure private values
- ▶ $\lambda = 1/3$: common values

Example

Consider the K-dimensional VCG auction and K-dimensional GSP auction with K = 2 positions and N = 3 bidders, with CTR normalized to $(1, \alpha_2)$. $\alpha_2 \in [0, 1]$. x_i i.i.d. on U[0, 1]. v_i is given by

$$v_i = v(x_i, x_j, x_k) = \lambda x_i + rac{1-\lambda}{2}(x_j + x_k) \quad \lambda \in \left[rac{1}{3}, 1
ight]$$

 λ represents the degree of interdependency in bidders' values:

- $\lambda = 1$: independent pure private values
- $\lambda = 1/3$: common values

 α_2 represents the relative quality of position 2 compared to position 1:

- $\alpha_2 = 1$: identical items
- $\triangleright \alpha_2 = 0$: single item

Example: Equilibrium of K-D VCG with $\alpha_2 = 0.75$

Figure 1: Equilibrium Bidding Strategies for Positions 1 and 2 in K-dimensional VCG Auction

Haomin Yan

Example: Equilibrium of K-D GSP with $\alpha_2 = 0.75$

Figure 2: Equilibrium Bidding Strategies for Positions 1 and 2 in K-dimensional GSP Auction

Haomin Yan

Example: Equilibrium of K-D Auctions with $\alpha_2 = 0.75$

Figure 3: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction

Haomin Yan

Example: Equilibrium of K-D Auctions with $\alpha_2 = 0.25$

Figure 4: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction

Haomin Yan

Generalized English Auction (GEA)

- Ascending clock showing current price; bidders drop out at any time.
- Auction ends when only one bidder is left.
- Drop-out prices: $p_N \leq p_{N-1} \leq \cdots \leq p_2$
- The remaining bidder wins Position 1 and pays α₁ × p₂, the last drop-out bidder wins Position 2 and pays α₂ × p₃, etc.

Generalized English Auction (GEA)

- Ascending clock showing current price; bidders drop out at any time.
- Auction ends when only one bidder is left.
- Drop-out prices: $p_N \leq p_{N-1} \leq \cdots \leq p_2$
- ► The remaining bidder wins Position 1 and pays α₁ × p₂, the last drop-out bidder wins Position 2 and pays α₂ × p₃, etc.

Example: 3 Advertisers: A, B, and C; 2 positions: CTR=(300, 100)

Ex-post Equilibrium of GEA

Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history **AND** the number of remaining bidders: **proof**

Ex-post Equilibrium of GEA Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history **AND** the number of remaining bidders: proof

No one has dropped out:
$$n = N$$

 $b_N^*(x_i) = v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(N-K)})$

Ex-post Equilibrium of GEA Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history **AND** the number of remaining bidders: proof

No one has dropped out:
$$n = N$$

 $b_N^*(x_i) = v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(N-K)})$

More bidders than positions are left: $(K + 1) \le n \le (N - 1)$ $b_n^*(x_i|p_N, \cdots, p_{n+1}) = v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(n-K)}, \underbrace{y_n, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text{ lowest signals}})$

Ex-post Equilibrium of GEA Proposition 5

At any time of the auction, an active bidder's equilibrium drop-out strategy depends on the drop-out price history **AND** the number of remaining bidders: proof

No one has dropped out:
$$n = N$$

 $b_N^*(x_i) = v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(N-K)})$

More bidders than positions are left: $(K + 1) \le n \le (N - 1)$ $b_n^*(x_i|p_N, \cdots, p_{n+1}) = v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(n-K)}, \underbrace{y_n, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text{ lowest signals}})$

► Fewer bidders than positions are left: $n \le K$ $b_n^*(x_i|p_N, \cdots, p_{n+1}) = v^{(n-1)}(x_i, x_i, \underbrace{y_n, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text{ lowest signals}}) - \underbrace{\frac{\alpha_n}{\alpha_{n-1}} \left[v^{(n-1)}(x_i, x_i, \underbrace{y_n, y_{n+1}, \cdots, y_{N-1}}_{(N \text{ possibly for each of the signal formula}) - p_{n+1} \right]}_{\text{Haomin Yan}}$ Main Results: Revenue

Main Results: Revenue

Revenue Comparison

Proposition 6

For any value function $v(x_i, x_{-i})$ and distribution of signals $F(x_1, x_2, \dots, x_N)$ that satisfy assumptions **A1-A5**, \bullet proof

$$R^{GEA} \ge R^{K-VCG} = R^{K-GSP}$$

Revenue Comparison

Proposition 6

For any value function $v(x_i, x_{-i})$ and distribution of signals $F(x_1, x_2, \dots, x_N)$ that satisfy assumptions A1-A5, \bullet proof \bullet proof

$$R^{GEA} \ge R^{K-VCG} = R^{K-GSP}$$

Corollary 1

When bidders' signals are independently and identically distributed, for any value function $v(x_i, x_{-i})$ that satisfies **A1-A3**,

$$R^{GEA} = R^{K-VCG} = R^{K-GSP}$$

Characterization of the Optimal Position Auction

Proposition 7

Given a profile of bidders' signals (x_i, x_{-i}) , suppose the bidders receive positions in the rank ordering of their signals under allocation rule $q^*(x_i, x_{-i})$. Suppose also that the payment rule is given by

$$p_i^*(x_i, x_{-i}) = q_i^*(x_i, x_{-i})v_i(x_i, x_{-i}) - \int_0^{x_i} q_i^*(s, x_{-i}) \frac{\partial v_i(s, x_{-i})}{\partial s} ds$$

Then (q^*, p^*) is an optimal position auction among all the ex-post IC and IR mechanisms subject to no reserve price. When bidders have independent signals, this auction is optimal among all Bayesian IC and IR mechanisms. \bullet proof \bullet proof

Characterization of the Optimal Position Auction

Proposition 7

Given a profile of bidders' signals (x_i, x_{-i}) , suppose the bidders receive positions in the rank ordering of their signals under allocation rule $q^*(x_i, x_{-i})$. Suppose also that the payment rule is given by

$$p_i^*(x_i, x_{-i}) = q_i^*(x_i, x_{-i})v_i(x_i, x_{-i}) - \int_0^{x_i} q_i^*(s, x_{-i}) \frac{\partial v_i(s, x_{-i})}{\partial s} ds$$

Then (q^*, p^*) is an optimal position auction among all the ex-post IC and IR mechanisms subject to no reserve price. When bidders have independent signals, this auction is optimal among all Bayesian IC and IR mechanisms. (Proof) (Proof)

Proposition 8

When bidders have independent signals, the optimal revenue can be practically implemented by GEA, K-dimensional GSP auction, and K-dimensional VCG auction. Proof

Conclusions

Summary of Results

	GSP	VCG	GEA
1-dimensional	Inefficient	Inefficient	Efficient
K-dimensional	Efficient Revenue: 2 nd (*)	Efficient Revenue: 2 nd (*)	Revenue: 1 st (*)

(*): Revenue equivalent under independent signals. This is also the optimal revenue subject to no reserve price.

Summary of Results

	GSP	VCG	GEA
1-dimensional	Inefficient	Inefficient	Efficient
K-dimensional	Efficient Revenue: 2 nd (*)	Efficient Revenue: 2 nd (*)	Revenue: 1 st (*)

(*): Revenue equivalent under independent signals. This is also the optimal revenue subject to no reserve price.

Conclusions

- Allowing bidders to condition bids on positions improves efficiency and revenue.
- There is a trade-off between simplicity v.s. efficiency and revenue in auction design.

Haomin Yan

Future Research Directions

Position Auctions with Multi-unit Demands (working paper)

- Bidders may demand multiple ad slots under the same keyword.
- This paper extends the study of auction theory into vertically differentiated items with multi-unit demands.
- I propose a VCG auction and a two-stage ascending clock auction that combines the features of "Clinching" Auction in Ausubel (2004) and Generalized English Auction to allocate positions efficiently.

Future Research Directions

Position Auctions with Multi-unit Demands (working paper)

- Bidders may demand multiple ad slots under the same keyword.
- This paper extends the study of auction theory into vertically differentiated items with multi-unit demands.
- I propose a VCG auction and a two-stage ascending clock auction that combines the features of "Clinching" Auction in Ausubel (2004) and Generalized English Auction to allocate positions efficiently.

Test Theoretical Results Empirically and Experimentally

- Test the efficiency and revenue properties using experimental data
- Quantify the revenue effect from adopting a multi-dimensional bidding language in GSP and VCG

Thank You!

Lemma 1: Efficiency Condition

Lemma 1

A one-dimensional position auction can be efficient if and only if there exists a symmetric and strictly monotonic equilibrium bidding strategy $\beta(x_i)$.

Lemma 2: BNE of 1-D GSP

Lemma 2

In the one-dimensional GSP auction with 2 positions, if a monotonic Bayesian equilibrium bidding strategy $\beta(x_i)$ exists, then $b^* = \beta(x_i)$ maximizes

$$\begin{split} \Pi(b_i|x_i) = & \int_0^{\beta^{-1}(b_i)} \int_0^{y_1} \alpha_1 [v^{1,2}(x_i, y_1, y_2) - \beta(y_1)] g_i^{2,1}(y_2, y_1|x_i) dy_2 dy_1 \\ & + \int_{\beta^{-1}(b_i)}^{\bar{x}_i} \int_0^{\beta^{-1}(b_i)} \alpha_2 [v^{1,2}(x_i, y_1, y_2) - \beta(y_2)] g_i^{2,1}(y_2, y_1|x_i) dy_2 dy_1 \end{split}$$

Take FOC yields

For all $x_i \in [0, \bar{x}]$, $\beta(x_i)$ satisfies the Volterra equation

$$\beta(x_i) = \frac{g_1(x_i|x_i) \left[(\alpha_1 - \alpha_2) v^1(x_i, x_i) + \alpha_2 \int_0^{x_i} \beta(y_2) g_{2|1}(y_2|x_i, x_i) dy_2 \right] + g_2(x_i|x_i) \alpha_2 v^2(x_i, x_i)}{\alpha_1 g_1(x_i|x_i) + \alpha_2 g_2(x_i|x_i)}$$
(10)

Proof of Proposition 1: Inefficiency of 1-D GSP

In a one-dimensional GSP auction with two positions, the equilibrium condition can be written as

$$g_1(x_i|x_i)E\left[\Pi_1^G - \Pi_2^G | X = x_i, Y_1 = x_i\right] + g_2(x_i|x_i)E\left[\Pi_2^G | X = x_i, Y_2 = x_i\right] = 0$$

When $x_i \to \bar{x}$, $g_2(x_i|x_i) \to 0$, then $g_1(x_i|x_i)E\left[\prod_{1}^{G} - \prod_{2}^{G} | X = x_i, Y_1 = x_i\right] = 0$. Suppose the BNE $\beta^{G}(x_i)$ is strictly increasing. Then

$$\lim_{\alpha_2 \to \alpha_1} E \Big[\Pi_1^G - \Pi_2^G \Big| X = x_i, Y_1 = x_i \Big]$$

= $\alpha_1 \int_0^{x_i} \Big(\beta^G(y_2) - \beta^G(x_i) \Big) g_{2|1}(y_2|x_i, x_i) dy_2 < 0$

So there always exists (α_1, α_2) under which FOC < 0 around x_i close to \bar{x} , contradicting the assumption that $\beta^G(x_i)$ is an equilibrium.

Lemma 3: BNE of 1-D VCG

Lemma 3

In the one-dimensional VCG auction with 2 positions, if a monotonic Bayesian equilibrium bidding strategy $\beta(x_i)$ exists, then $b^* = \beta(x_i)$ maximizes

$$\begin{split} \Pi(b_i|x_i) = & \int_0^{\beta^{-1}(b_i)} \int_0^{y_1} \Big\{ \alpha_1[v^{1,2}(x_i,y_1,y_2) - \beta(y_1)] + \alpha_2[\beta(y_1) - \beta(y_2)] \Big\} g_i^{2,1}(y_2,y_1|x_i) dy_2 dy_1 \\ & + \int_{\beta^{-1}(b_i)}^{\bar{x}_i} \int_0^{\beta^{-1}(b_i)} \alpha_2[v^{1,2}(x_i,y_1,y_2) - \beta(y_2)] g_i^{2,1}(y_2,y_1|x_i) dy_2 dy_1 \end{split}$$

The FOC implies $\beta(x_i)$ is characterized by

$$eta(x_i) = rac{g_1(x_i|x_i)(lpha_1-lpha_2)v^1(x_i,x_i)+g_2(x_i|x_i)lpha_2v^2(x_i,x_i)}{g_1(x_i|x_i)(lpha_1-lpha_2)+g_2(x_i|x_i)lpha_2}$$

Haomin Yan

Proof of Proposition 2: Inefficiency of 1-D VCG

$$\beta^{V}(x_{i}) = \gamma(x_{i};\alpha_{1},\alpha_{2})v^{1}(x_{i},x_{i}) + (1 - \gamma(x_{i};\alpha_{1},\alpha_{2}))v^{2}(x_{i},x_{i})$$

Take derivative of $\beta(x_i) = \gamma(x_i)v^1(x_i, x_i) + (1 - \gamma(x_i))v^2(x_i, x_i)$ with respect to x_i :

 $\frac{\partial \gamma(x_i)}{\partial x_i}$

Suppose all of bidder *i*'s opponents adopt $\beta(x)$. The FOC implies that in equilibrium, a bidder should be indifferent between position k and k + 1 when $Y_k = x_i$:

$$E\left[\alpha_{k}v_{i}-\sum_{j=k}^{K}(\alpha_{j}-\alpha_{j+1})\beta_{j}(Y_{j})\middle|X=x_{i},Y_{k}=x_{i}\right]$$
$$=E\left[\alpha_{k+1}v_{i}-\sum_{j=k+1}^{K}(\alpha_{j}-\alpha_{j+1})\beta_{j}(Y_{j})\middle|X=x_{i},Y_{k}=x_{i}\right]$$

which yields

$$\alpha_{k} \mathbf{v}^{k}(\mathbf{x}_{i}, \mathbf{x}_{i}) - (\alpha_{k} - \alpha_{k+1}) \underbrace{\mathcal{E}[\beta_{k}(\mathbf{Y}_{k})|\mathbf{X} = \mathbf{x}_{i}, \mathbf{Y}_{k} = \mathbf{x}_{i}]}_{\beta_{k}(\mathbf{x}_{i})} = \alpha_{k+1} \mathbf{v}^{k}(\mathbf{x}_{i}, \mathbf{x}_{i})$$

$$E[\beta_k(Y_k)|X = x_i, Y_k = x_i] = \beta_k(x_i) = v^*(x_i, x_i)$$

Therefore, the equilibrium bidding strategy is given by

$$b_i^{k*} = \beta_k(x_i) = v^k(x_i, x_i)$$

Haomin Yan

Suppose all of bidder *i*'s opponents adopt $\beta(x)$. The FOC of *i*'s objective function implies that in equilibrium, a bidder should be indifferent between position k and k + 1 when $Y_k = x_i$:

$$E[\alpha_k(\mathbf{v}_i - \beta_k(\mathbf{Y}_k)) | X = \mathbf{x}_i, \mathbf{Y}_k = \mathbf{x}_i] = E[\alpha_{k+1}(\mathbf{v}_i - \beta_{k+1}(\mathbf{Y}_{k+1})) | X = \mathbf{x}_i, \mathbf{Y}_k = \mathbf{x}_i]$$

which yields

$$\alpha_k \left(\mathbf{v}^k(\mathbf{x}_i, \mathbf{x}_i) - \underbrace{E[\beta_k(\mathbf{Y}_k) | \mathbf{X} = \mathbf{x}_i, \mathbf{Y}_k = \mathbf{x}_i]}_{\beta_k(\mathbf{x}_i)} \right)$$
$$= \alpha_{k+1} \left(\mathbf{v}^k(\mathbf{x}_i, \mathbf{x}_i) - E[\beta_{k+1}(\mathbf{Y}_{k+1}) | \mathbf{X} = \mathbf{x}_i, \mathbf{Y}_k = \mathbf{x}_i] \right)$$

Therefore, the equilibrium bidding strategy is given by

$$b_i^{k*} = \beta_k(x_i) = v^k(x_i, x_i) - \frac{\alpha_{k+1}}{\alpha_k} [v^k(x_i, x_i) - E[\beta_{k+1}(Y_{k+1}) | X = x_i, Y_k = x_i]]$$

Return

- When all N bidders are "in", suppose all the opposing bidders adopt strategy b^{*}_N, bidder *i* will not drop out until the expected payoff from the last position K falls below zero.
- *i* wins position K by dropping out at p only if (N − K) lowest signal bidders drop out simultaneously, which implies
 Y_K = Y_{K+1} = ··· = Y_{N-1} = y_K. *i*'s expected payoff is

$$\alpha_{K} v^{(K)}(x_{i}, y_{K}, \cdots, y_{K}) - \alpha_{K} v^{(K)}(y_{K}, y_{K}, \cdots, y_{K}) \geq 0 \quad iff \quad x_{i} \geq y_{K}$$

So bidder *i*'s optimal drop-out price is $p = v^{(K)}(x_i, x_i, \cdots, x_i)$.

When (N − n) bidders have dropped out, but n ≥ K + 1 bidders are still in the auction, we just need to replace the lowest (N − n) signals by the revealed signals. i's optimal drop-out price is

$$v^{(K)}(x_i, \underbrace{x_i, \cdots, x_i}_{(n-K)}, \underbrace{y_n, y_{n+1}, \cdots, y_{N-1}}_{(N-n) \text{ lowest signals}})$$

- When only n ≤ K bidders left in the auction, a bidder should be indifferent between getting the current lowest position n at price p_{n+1} and an upper position (n − 1) at a higher price b in equilibrium.
- The lowest value remaining opposing bidder with signal y_{n-1} drops out at b defined by b^{*}_n:

$$b = v^{(n-1)}(y_{n-1}, y_{n-1}, \cdots, y_N) - \frac{\alpha_n}{\alpha_{n-1}} \Big[v^{(n-1)}(y_{n-1}, y_{n-1}, \cdots, y_N) - p_{n+1} \Big]$$

- The expected payoff from winning (n-1) is $\Pi_{n-1} = \alpha_{n-1} \Big[v^{(n-1)}(x_i, y_{n-1}, y_n, \cdots, y_N) - b \Big].$
- The expected payoff from winning *n* is
 Π_n = α_n [v⁽ⁿ⁻¹⁾(x_i, y_{n-1}, y_n ··· , y_N) − p_{n+1}].
 Π_{n-1} − Π_n ≥ 0 if and only if
 (α_{n-1} − α_n) [v⁽ⁿ⁻¹⁾(x_i, y_{n-1}, y_n ··· , y_N) − v⁽ⁿ⁻¹⁾(y_{n-1}, y_{n-1}, y_n ··· , y_N)] ≥ 0

So b_n^* is best response bid for *i* when $n \leq K$ given all opponents adopt b^* .

Proof of Proposition 6: $R^E \ge R^V$

For the last position K, the expected prices in GEA and K-dimensional VCG are given by

$$E[p^{E,(K)}] = E[v^{(K)}(Y_K, Y_K; Y_{K+1}, Y_{K+2}, \cdots, Y_{N-1})|\{Y_{K-1} > X > Y_K\}]$$

$$E[p^{V,(K)}] = E[v^K(Y_K, Y_K)|\{Y_{K-1} > X > Y_K\}]$$

For any position $k \in [1, K - 1]$, the expected prices are given by

$$E[p^{E,(k)} - p^{E,(k+1)}] = (\alpha_k - \alpha_{k+1})E[v^{(k)}(Y_k, Y_k; Y_{k+1}, ..., Y_{N-1})|\{Y_{k-1} > X > Y_k\}]$$

$$E[p^{V,(k)} - p^{V,(k+1)}] = (\alpha_k - \alpha_{k+1})E[v^k(Y_k, Y_k)|\{Y_{k-1} > X > Y_k\}]$$

Apply Linkage Principle twice gives $E[p^{E,(k)}] \ge E[p^{V,(k)}]$ for all k. (Return

Haomin Yan

Proof of Proposition 6: $R^V = R^G$ (Method 1)

For the last position K, the expected prices in K-dimensional VCG and GSP are given by

$$E[p^{V,(K)}] = \alpha_K E[v^K(Y_K, Y_K) | \{Y_{K-1} > X > Y_K\}]$$

$$E[p^{G,(K)}] = \alpha_K E[v^K(Y_K, Y_K) | \{Y_{K-1} > X > Y_K\}]$$

For any position $k \in [1, K-1]$, the expected prices are given by

$$\begin{split} E[p^{V,(k)}] &= (\alpha_k - \alpha_{k+1})E[\beta_k^V(Y_k)|\{Y_{k-1} > X > Y_k\}] + E[p^{V,(k+1)}] \\ &= (\alpha_k - \alpha_{k+1})E[v^k(Y_k, Y_k)|\{Y_{k-1} > X > Y_k\}] + E[p^{V,(k+1)}] \\ E[p^{G,(k)}] &= \alpha_k E[\beta_k^G(Y_k)|\{Y_{k-1} > X > Y_k\}] \\ &= \alpha_k E[v^k(Y_k, Y_k) - [\frac{\alpha_{k+1}}{\alpha_k}v^k(Y_k, Y_k) - E[\beta_{k+1}^G(Y_{k+1})]]|\{Y_{k-1} > X > Y_k\}] \\ &= (\alpha_k - \alpha_{k+1})E[v^k(Y_k, Y_k)|\{Y_{k-1} > X > Y_k\}] + E[p^{G,(k+1)}] \\ \end{split}$$
Therefore, $E[p^{V,(k)}] = E[p^{G,(k)}]$ for all k .

Haomin Yan

Proof of Proposition 6: $R^V = R^G$ (Method 2)

With K = 2 positions, the expected payment of a bidder with signal x_i in K-D VCG and GSP are given by

$$\begin{split} m^{V}(x_{i}) = & Pr(x_{i} \geq Y_{1}) E\left[(\alpha_{1} - \alpha_{2}) \underbrace{v^{1}(Y_{1}, Y_{1})}_{\beta_{1}^{V}(Y_{1})} + \alpha_{2} \underbrace{v^{2}(Y_{2}, Y_{2})}_{\beta_{2}^{V}(Y_{2})} \middle| x_{i} \geq Y_{1} \right] \\ &+ Pr(Y_{2} \leq x_{i} < Y_{1}) E\left[\alpha_{2} \underbrace{v^{2}(Y_{2}, Y_{2})}_{\beta_{2}^{V}(Y_{2})} \middle| Y_{2} \leq x_{i} < Y_{1} \right] \end{split}$$

$$\begin{split} m^{G}(x_{i}) = & Pr(x_{i} \geq Y_{1})E\left[\alpha_{1}\underbrace{\left\{v^{1}(Y_{1}, Y_{1}) - \frac{\alpha_{2}}{\alpha_{1}}v^{1}(Y_{1}, Y_{1}) + \frac{\alpha_{2}}{\alpha_{1}}E[v^{2}(Y_{2}, Y_{2})|Y_{1}]\right\}}_{\beta_{1}^{G}(Y_{1})} \\ &+ Pr(Y_{2} \leq x_{i} < Y_{1})E\left[\alpha_{2}\underbrace{v^{2}(Y_{2}, Y_{2})}_{\beta_{2}^{G}(Y_{2})}\middle|Y_{2} \leq x_{i} < Y_{1}\right] \end{split}$$

According to the Law of Iterated Expectations,

$$E\Big[E[v^2(Y_2,Y_2)|Y_1]\Big|Y_1 \leq x_i\Big] = E[v^2(Y_2,Y_2)|Y_1 \leq x_i]$$

So $m^V(x_i) = m^G(x_i)$. Similar argument applies for any $K \ge 2$.

Haomin Yan

Lemma 4

A position auction mechanism (q, p) is expost IC and IR if and only if for all i and (x_i, x_{-i}) , $q_i(x_i, x_{-i})$ is weakly increasing in x_i , and

$$u_i(x_i, x_{-i}) = u_i(0, x_{-i}) + \int_0^{x_i} \Big[\frac{\partial v_i(s, x_{-i})}{\partial s} \Big] q_i(s, x_{-i}) ds \quad \text{for all} \quad x_{-i}$$

$$u_i(0, x_{-i}) \ge 0$$
 for all x_{-i}

Lemma 5

I

In any ex post IC and IR mechanism, the ex ante expected revenue is given by

$$ER = \int_{x} \sum_{i} \left\{ q_{i}(x_{i}, x_{-i}) \left\{ v_{i}(x_{i}, x_{-i}) - \frac{1 - F_{i}(x_{i}|x_{-i})}{f_{i}(x_{i}|x_{-i})} \frac{\partial v_{i}(x_{i}, x_{-i})}{\partial x_{i}} \right\} \right\} f(x) dx$$
$$- \int_{x_{-i}} \sum_{i} u_{i}(0, x_{-i}) f_{-i|0}(x_{-i}|0) dx_{-i}$$

Haomin Yan

Lemma 6

A position auction mechanism (q, p) is Bayesian IC and IR if for every *i*, for any report *x*, the expected CTR $q_i(x_i, x_{-i})$ is weakly increasing in x_i , and

$$U_i(x_i) = U_i(0) + \int_{x_{-i}} \int_0^{x_i} \left[\frac{\partial v_i(s, x_{-i})}{\partial s} \right] q_i(s, x_{-i}) ds f_{-i}(x_{-i}) dx_{-i}$$
$$U_i(0) \ge 0$$

Lemma 7

For any Bayesian IC and IR mechanism that satisfy the conditions in lemma 6, the ex ante expected revenue is given by

$$ER = \int_{x} \sum_{i} \left\{ q_{i}(x_{i}, x_{-i}) \left\{ v_{i}(x_{i}, x_{-i}) - \frac{1 - F_{i}(x_{i})}{f_{i}(x_{i})} \frac{\partial v_{i}(x_{i}, x_{-i})}{\partial x_{i}} \right\} \right\} f(x) dx - \sum_{i} U_{i}(0)$$

Return

- Substitute $\hat{x}^k(x_{-i}) = \hat{X}^k(x_{-i})$ into the optimal auction (q^*, p^*) defined in Proposition 7, it is trivial that $q^* = q^V$.
- Substitute the allocation rule $q^V = q^*$ into the payment rule

$$p_i^*(x_i, x_{-i}) = q_i^*(x_i, x_{-i})v_i(x_i, x_{-i}) - \int_0^{x_i} q_i^*(s, x_{-i}) \frac{\partial v_i(s, x_{-i})}{\partial s} ds$$

It can be shown that $p_i^* = p_i^V$. So (q^*, p^*) is equivalent to (q^V, p^V) under regularity condition **R3**.

► The payment of each bidder depends on the entire signal profile in the Generalized-VCG, while it depends only on a subset of bidders' signals in GEA and depends only on each bidder's own signal in K-D GSP and K-D VCG. R^{Optimal} ≥ R^{GEA} ≥ R^{K-VCG} = R^{K-GSP} under affiliated signals by Linkage Principle.