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Abstract

This paper extends the theoretical study of position auctions to an interde-

pendent values model in which each bidder’s value depends on its opponents’

information as well as its own information. Position auctions are used by major

search engines to allocate multiple advertising positions on search result pages.

In this paper, I examine efficiency and revenues of three position auction formats:

Generalized Second Price (GSP) auctions, VCG-like auctions, and Generalized

English Auctions (GEA). I find that both the GSP auction and the VCG-like

auction with one-dimensional bidding language can be inefficient under interde-

pendent values, which contrasts previous literature that favors the GSP auction

for its simplicity. I next show this inefficiency problem can be fully resolved by

adopting a multi-dimensional bidding language that allows bidders to bid dif-

ferently across positions. Moreover, the dynamic GEA that implicitly adopts a

multi-dimensional bidding language always implements efficiency in an ex-post

equilibrium. Then I provide a revenue ranking of the three efficient position auc-

tions and characterize the optimal position auction subject to no reserve price

under interdependent values. I find that under independent signals and a set

of regularity conditions, the three efficient position auctions also implement the

optimal revenue subject to no reserve price.
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1 Introduction

Position auctions are used by search engines such as Google and Yahoo! to allocate

sponsored advertising slots to advertisers on search result pages. When an Internet

user enters a keyword or phrase on a search engine, the list of advertisements generated

by that search is the result of a position auction. Because of consumers’ sequential

search habits1, advertising links placed on the top of web page receive more clicks

than those placed on the bottom of web page, representing a typical set of vertically

differentiated items. Each advertising link’s click probability can be measured by click-

through-rate (CTR), which is given by the average number of clicks the link receives per

unit time. There are three different position auction formats that have been analyzed

in the literature, including the Generalized Second Price (GSP) auction, the Vickrey-

Clark-Groves (VCG) auction, and the Generalized English Auction (Edelman et al.

2007[15]). Variants of the Generalized Second Price auction have been practically

adopted by search engines2. In the standard model of GSP auction3 with per-click

payment rule, advertisers submit one-dimensional per-click bids that can be applied

to any position. The positions are allocated according to the ranking of bids, and

each bidder who wins a position pays the bid of the bidder who is placed one position

below for each click. Previous literature has shown that both the GSP auction and the

VCG auction always implement the efficient allocation in equilibrium under complete

information (Edelman et al. 2007[15]; Varian 2007[38]). The GSP auction is especially

favored for its simple design: one-dimensional bids are used to determine the allocation

1Consumers tend to search from top to bottom when reading a list and may end search at any
time, so the top links are more likely to be clicked than the bottom links. This search behavior can be
viewed as a rule of thumb, or as a rational behavior given positive search cost and correct expectation
about advertisers’ relevance (Athey and Ellison 2009[4]; Chen and He 2011[11]).

2The Generalized Second Price auction has several variations in its form. One important variation
is to adopt a vector of “quality scores” computed based on click-through-rate history to adjust bids
and rank advertisers in the order of adjusted bids instead of raw bids. Another variation is to adopt
a pay-per-impression scheme instead of a pay-per-click scheme. Under the pay-per-click scheme, an
advertiser will be charged every time a user clicks on its advertisement. Under the pay-per-impression
scheme, an advertiser will be charged every time a user sees the search result page that contains its
advertisement regardless of whether the user clicks on the advertisement or not. Google currently
uses the pay-per-click GSP auction with quality scores.

3Following Edelman et al. (2007)[15], the GSP auction in this paper refers to the GSP auction
with pay-per-click payment rule and leaves aside the quality scores.
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of multiple positions, and payment for each position depends only on the highest losing

bid for that specific position.

The motivation of this paper comes from that previous literature has modeled

position auctions either under complete information or under incomplete information

with independent private values (Gomes and Sweeney 2014[21]). However, given the

fact that advertisers bidding for the same keyword are likely to be oligopoly competitors

operating in the same market subject to common aggregate demand shocks, neither the

complete information model nor the independent private values model is sufficient for

capturing both (1) the uncertainty in sponsored search markets and (2) the oligopoly

relationship among advertisers in position auctions.

The justification of complete information in the literature comes from the claim that

advertisers learn about their own values as well as their rivals’ values from information

revealed in previous auction rounds. This claim implicitly assumes that advertisers’

values do not evolve over time intervals between bidding, so the information revealed

in previous rounds fully reveals advertisers’ values for the current round. In practice,

considerable uncertainty exists in sponsored search auctions. For example, consider

the keyword “iphone.” Each advertiser’s value from receiving a click of the online

advertisement depends on how likely consumers are going to purchase a new iphone

upon click, which can be affected significantly by product upgrading and new releases

in the iphone market. Consider the time when Apple Inc. releases a new version of

iphone, then each advertiser’s value changes continuously over time after the first day

of release, and it is not practical to precisely predict consumer demand or advertisers’

values in advance. Consider another search phrase for example, “hotels in New York

City,” then each advertiser’s value per click depends on how likely consumers are going

to book a hotel after clicking on its advertisement, which can be affected by a variety

of factors including weather, day of the week, time of the year, special events in New

York, etc. Therefore, advertisers’ values evolve continuously for many keywords related

to markets with frequent demand shocks. The evolution in advertisers’ values as result

of shocks is also pointed out in Fershtman and Pavan (2016)[18] and Abhishek and
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Hosanagar (2012)[1]. On the other hand, it is not practical for advertisers to update

bids in a continuous manner given the fact that each advertiser is interested in a large

set of keywords. The fluctuation in consumer demand and the existence of time interval

between bid updating imply that information revealed from previous auctions does not

always provide complete information about an advertiser’s own value or its opponents

values at the time of bidding.

Another important feature of position auction is that advertisers bidding for a slot

under the same keyword are often oligopoly competitors operating in the same industry.

Compared to traditional advertising, a main advantage of sponsored advertising is

that it allows advertisers to effectively target consumers. This advantage naturally

comes with the fact that advertisers under the same keyword are selling identical

or imperfectly substitutable products or services in the market related to the search

keyword. Since each advertiser’s value per click evolves continuously under demand

shocks, it is reasonable to assume that there exists some unknown common component

in bidders’ ex-post values that is driven by demand shocks in the same market. For

example, when Apple Inc. releases a new version of iphone, consumers are more likely

to buy a new iphone upon click, and all advertisers are subject to the same demand

shock. While consumer demand cannot be precisely predicted, each advertiser can

still have some imprecise estimation of its value per click. Suppose a given advertiser

receives a private signal that contains information about how likely consumers are going

to purchase a new iphone after the release. Then the private signals of other advertisers

would be informative about the first advertiser’s ex-post value per click, given the fact

that consumer demand drives a common component in all advertisers’ ex-post values.

Since the advertisers’ private signals contain information about consumer demand in

the same market, it is also reasonable to assume the signals are affiliated in distribution.

Therefore, the information structure in position auctions is better described by the

interdependent values model introduced by Milgrom and Weber (1982)[31], in which

one bidder’s value can depend on other bidders’ private information, and bidders’

private information are affiliated. However, the performance of the GSP auction, the

VCG auction and the Generalized English Auction is not well-understood when bidders
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have interdependent values. This paper fills the gap in the literature and extends the

study of position auctions into this broader class of information structure.

In this paper, I model a single-round position auction under a symmetric interde-

pendent values model. Since each bidder’s ex-post value depends on its opponents’

private information, bidders can be uncertain about their ex-post values at the time

of bidding, and a generalized version of the “winner’s curse” in Milgrom and We-

ber (1982)[31] is present: the expected value per click conditional on winning a higher

ranked position is lower than that conditional on winning a lower ranked position. Win-

ning a top position conveys some bad news, as it implies overestimation of ex-post value

from receiving a click. The main analysis of this paper explores (1) how the incomplete

information and the presence of the generalized “winner’s curse” under interdependent

values affect efficiency and revenue of GSP auctions, VCG-like auctions4, and Gener-

alized English Auctions, (2) how to design alternative practical auction mechanisms to

improve efficiency, and (3) how the expected revenues of different auction mechanisms

compare to each other and to the optimal revenue implementable subject to no reserve

price.

I first show that both the GSP auction and the VCG-like auction can be inefficient

under interdependent values, which contrasts with previous literature that favors the

GSP auction for its simplicity. Then I propose a modification of the GSP auction

and the VCG-like auction by adopting a multi-dimensional bidding language that al-

lows each bidder to bid differently across positions. I call these two modified auctions

K-dimensional GSP auctions and K-dimensional VCG auctions, respectively. I charac-

terize the unique symmetric Bayesian Nash equilibrium in these two modified auctions

and show that efficiency can be fully implemented in both auctions after adopting this

multi-dimensional bidding language. On the other hand, the Generalized English Auc-

tion that implicitly adopts a multi-dimensional bidding language always implements

the efficient allocation in an ex-post equilibrium. Moreover, the K-dimensional GSP

4Although the VCG mechanism is not defined under interdependent values, this paper studies
a VCG-like auction called the one-dimensional VCG auction that adopts a VCG-like payment rule
under interdependent values. This one-dimensional VCG auction is analogous to the second-price
auction in Milgrom and Weber (1982)’s study of single-unit auctions under interdependent values.
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auction and the K-dimensional VCG auction are always revenue equivalent, while the

dynamic Generalized English Auction yields higher revenue under affiliated signals. In

the special case of independent signals, all three efficient auctions are revenue equiv-

alent. I also characterize the optimal position auction that generates the highest ex-

pected revenue subject to no reserve price as a direct revelation mechanism and show

that under certain regularity conditions and independent signals, the K-dimensional

GSP auction, the K-dimensional VCG auction, and the Generalized English Auction

can implement the optimal revenue subject to no reserve price.

The inefficiency of the GSP auction and the VCG-like auction comes from the

fact that both auctions use a simple one-dimensional bidding language that restricts

bidders to submit the same bid for all positions, while the expected payoff of winning

a higher ranked position can be lower than that of a lower ranked position, leading to

bid-shading incentives in both auctions. In the VCG-like auction, this phenomenon

arises solely from the presence of the “winner’s curse” under interdependent values.

In the GSP auction, this phenomenon arises from both the GSP payment rule and

the “winner’s curse.” The former is pointed out by Gomes and Sweeney (2014)[21],

who show that the GSP auction can be inefficient under independent private values.

The intuition is that when the CTR of a lower ranked position is close to the CTR of

a higher ranked position, a bidder will receive similar number of clicks from winning

either position, but will pay a much higher price for each click if it wins the higher

ranked position given the GSP payment rule. Upon the introduction of interdependent

values, this bid-shading incentive is amplified under the “winner’s curse,” as winning

a higher ranked position not only implies a higher price per click but also implies a

lower expected value for every click. Given the presence of bid-shading incentive in

both auctions, efficiency can be retained only if all bidders have the same degree of

bid-shading incentives. However, this is not the case as long as there are more than one

positions. With multiple differentiated positions, the bid-shading incentive is stronger

for bidders with higher signals, since bidders with higher signals are more likely to win

the highest position in any monotonic equilibrium, while bidders with lower signals are

more concerned with winning any position instead of winning a top position. It is the
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differentiated bid-shading incentives across bidders that drive the inefficiency in both

GSP auctions and VCG-like auctions.

The source of inefficiency in the GSP auction and the VCG-like auction implies

that restricting bidders to submit the same bid for all positions can hurt efficiency. By

allowing bidders to express willingness to pay separately for each position, bidders can

easily incorporate the difference in expected payoffs from winning different positions

into their bids. The differentiated bid-shading incentives across bidders are replaced

by each bidder’s differentiated bid-shading incentives across positions. This explains

the efficiency of K-dimensional GSP and VCG auctions. Similarly, in the Generalized

English Auction, bidders are able to update beliefs about which position they are going

to win by dropping out at the current clock price during the dynamic process. The

Generalized English Auction implicitly adopts a multi-dimensional bidding language,

which is the main force that drives its efficiency. The revenue ranking between the

Generalized English Auction and the K-dimensional VCG auction resembles the rev-

enue ranking between the English auction and the second-price auction in Milgrom

and Weber (1982)[31] and comes from the fact that dynamic auctions outperform

static auctions in revenue by eliciting more information about bidders’ signals through

the drop-out process. On the other hand, the revenue equivalence between the K-

dimensional GSP and the K-dimensional VCG auctions comes from the fact that GSP

and VCG can be viewed as two different generalizations of the second-price auction

under the context of position auctions: both auctions use variations of a “second-

price” payment rule in which a given bidder’s bid only affects its allocation but not

its payment. Bidders are able to incorporate the difference in payment rules into their

bidding strategies, which drives the revenue equivalence result between these two static

auctions under the general assumption of affiliated signals. The revenue equivalence of

all three auctions under independent signals is consistent with the well-known revenue

equivalence theorem.

Comparing across the three auction formats, the Generalized English Auction has

two advantages over the static GSP and VCG-like auctions under interdependent values
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because of its dynamic nature. First, it naturally allows bidders to update strategy on

which position they are bidding for as rivals drop out in the dynamic process. This

advantage yields efficiency. Second, it allows bidders to update their belief on the ex-

post value per click from observing the drop-out prices of rivals who drop out before

them. This advantage yields higher revenue. However, the dynamic nature of the

Generalized English Auction also makes it impossible to be implemented in practice,

as sponsored search auctions take place in a continuous manner in real time. It is

impractical to gather all bidders to participate in a centralized clock auction at the

same time. Therefore, the Generalized English Auction can be viewed as a theoretical

modeling tool and a comparison benchmark rather than a practical auction format.

This paper establishes that, by adopting a multi-dimensional bidding language, both

the GSP auction and the VCG-like auction can achieve the same level of efficiency

as in the Generalized English Auction and also yield the same level of revenue under

independent signals, without losing feasibility for practical implementation.

The main contribution of this paper is the follows. First, I extend the study of

position auctions into interdependent values and show that existing commonly-used

position auctions, including both GSP and VCG auctions, are no longer efficient un-

der this information structure. Second, I identify that the source of this inefficiency

comes from the oversimplified bidding language and propose two alternative practical

efficient auction formats based on modification of GSP and VCG auctions. Third,

I provide a comparison across three different position auction formats in both effi-

ciency and revenue and provide a discussion on the optimal auction under this broad

class of information structure. The K-dimensional GSP auction and the K-dimensional

VCG auction proposed in this paper have the potential for practical implementation

by search engines as well as a wide range of two-sided platforms, such as Facebook,

Amazon, and Yelp. The main results of this paper imply that there is a trade-off be-

tween simplicity versus efficiency and revenue in auction design: simplicity can come

at a loss of efficiency and revenue. This trade-off depends critically on the information

structure.
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2 Related Literature

The earliest papers on position auction model it as a static game under complete

information, including Edelman et al. (2007)[15] and Varian (2007)[38]. Edelman et

al. (2007)[15] characterize the set of locally-envy free equilibria of the GSP auction

under complete information and show that the GSP auction has a locally-envy free

equilibrium that yields the same payoff outcome as the dominant strategy equilib-

rium of the VCG auction. Moreover, this equilibrium gives the bidder-optimal payoff

among all locally-envy free equilibria. In a complementary article, Varian (2007)[38]

characterizes the entire set of Nash equilibria in the GSP auction under complete infor-

mation. Milgrom (2010)[30] shows that the GSP auction can be viewed as a simplified

mechanism that restricts each bidder to submit the same bid for all positions. This

simplification in bidding language eliminates the lowest revenue equilibrium and leaves

only higher revenue equilibria under complete information. Dutting et al. (2011)[13]

point out that Milgrom (2010)[30]’s result depends critically on the complete informa-

tion assumption. This paper supports Dutting et al. (2011)[13]’s discussion on the

trade-off between simplicity and expressiveness in mechanism design by showing that

the GSP auction with one-dimensional bidding language can be sub-optimal under

interdependent values, in sharp contrast to the results in Edelman et al. (2007)[15],

Varian (2007)[38] and Milgrom (2010)[30] that favor the GSP auction for its simplicity

and desirable properties under complete information5.

In an incomplete information setting, Edelman et al. (2007)[15] model an ascending

auction called the Generalized English Auction (GEA) that implements the same payoff

outcome as the dominant strategy equilibrium of the VCG auction under independent

private values. Little was known about equilibria of the GSP auction under incomplete

information until Gomes and Sweeney (2014)[21] first characterized the Bayesian Nash

5The cost of conciseness in the design of GSP auction is also pointed out in the computer science
literature. Abrams et al. (2007)[2] show that an equilibrium can fail to exist in the GSP auction
when each bidder has a vector of different values for obtaining different slots. Benisch et al. (2008)[8]
show that the GSP auction can be arbitrarily inefficient under some distributions of the advertisers’
preferences when advertisers have private information. This paper complements these computer
science studies by providing some insights on the trade-off between simplicity and efficiency from an
economic perspective.
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Equilibrium of the GSP auction in an independent private values model and showed

this unique equilibrium can be inefficient under some click-through rate profiles. This

paper is closely related to Gomes and Sweeney (2014)[21] and extends their study in

three ways. First, this paper introduces informational interdependency among bidders’

values while nesting the independent values model as a special case and shows that

the introduction of interdependent values amplifies the inefficiency of the GSP auction.

Second, this paper identifies the source of inefficiency in the GSP auction and proposes

a modified GSP auction to improve efficiency. Third, this paper also compares the

performance of the GSP auction to other position auction formats. Moreover, one

implication of Gomes and Sweeney (2014)[21] is that the oversimplified payment rule

of the GSP auction can hurt efficiency under incomplete information. This paper

adds some new insights to this implication by showing that the oversimplified bidding

language is another cause of inefficiency under interdependent values.

This paper is also related to the literature on auctions and mechanism design un-

der interdependent values, most of which focus on single-unit auctions or multi-unit

auctions with identical items. Milgrom and Weber (1982)[31] characterize the equi-

libria of second-price auctions, first-price auctions and English auctions and compare

the expected revenues of these auctions under symmetric interdependent values. A

number of other articles examine the existence and design of efficient mechanisms un-

der interdependent values (Jehiel and Moldovanu, 2001[24]; Dasgupta and Maskin,

2000[12]; Perry and Reny, 2002[33]; Ausubel, 1999[5]; Ausubel and Cramton, 2004[7]).

This paper extends the literature on auction design under interdependent values into

multi-unit auctions with vertically differentiated items.

This paper complements the recent position auctions literature6 that introduces

some realistic assumptions into Edelman et al. (2007)[15]’s model. Some studies endo-

genize advertisers’ values by incorporating consumer search into the model and show

that firms are ranked in the order of relevance and consumers search sequentially in

equilibrium (Athey and Ellison, 2011[4]; Chen and He, 2011[11]; Kominers, 2009[26]).

6Most recent advances in this literature are summarized in Qin et al. (2015)[34].
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Several other studies introduce allocative externalities among bidders by allowing click-

through rate of each position to depend on the allocation of advertisers7 (Deng and Yu,

2009[14]; Farboodi and Jafaian, 2013[17]; Hummel and McAfee, 2014[22]; Izmalkov et

al., 2016[23]; Lu and Riis, 2016[28]). There are also studies that quantify the efficiency

loss that may arise in the GSP auction under different modeling assumptions, including

correlated private values, allocative externalities, uncertain click-through rate profiles,

etc. (Lucier and Leme, 2011[29]; Roughgarden and Tardos, 2015[35]; Caragiannis et

al., 2015[9]). This paper differs from the aforementioned studies by keeping Edelman

et al. (2007)[15]’s assumption of exogenous click-through rates while introducing in-

formational interdependency in bidders’ values, which to my knowledge has not been

done by previous studies.

Finally, this study is related to the strand of literature on optimal mechanism de-

sign. Myerson (1981)[32] characterizes the optimal mechanism for single-unit auctions

with independent private values. Ausubel and Cramton (1999)[6] find that in auc-

tion markets with perfect resale, it is optimal to allocate items efficiently. Edelman

and Schwarz (2010)[16] generalize Myerson (1981)[32]’s optimal mechanism design to

position auctions with independent private values and show that this optimal rev-

enue can be implemented by a Generalized English Auction with an optimal reserve

price. Roughgarden and Talgam-Cohen (2013)[36] and Li (2016)[? ] extend the char-

acterization of optimal single-unit auction to interdependent values. Ulku (2013)[37]

characterize the optimal mechanism for allocating a set of heterogeneous items un-

der interdependent values. The last part of this paper provides a corollary of Ulku

(2013)[37] under the special environment of position auctions.

7There is a similar line of research in the computer science literature (Aggwaral et al., 2008[3];
Constantin et al., 2011[10]; Ghosh and Mahdian, 2008[19]; Kempe and Mahdian, 2008[25]).
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3 Model

A search engine wishes to sell K positions to N > K bidders8, each with single-

unit demand for an advertising position on the search result page of the same keyword.

Bidders are indexed by i ∈ {1, 2, · · · , N}. Positions are indexed by k ∈ {1, 2, · · · , K}

according to their ranks on the web page and are vertically differentiated in their

commonly known qualities measured by click-through rates (CTR): (α1, α2, · · · , αK)9,

in which α1 ≥ α2 ≥ · · · ≥ αK . Each bidder i receives a private signal xi ∈ [0, x̄]

that affects her value from getting a click of her advertisement. The signals are

distributed over [0, x̄]N according to a commonly-known joint distribution function

F (x1, x2, · · · , xN), with density f(x1, x2, · · · , xN). The value per click10 of each bidder

i depends on her private signal xi as well as her opponents’ signals x−i ∈ [0, x̄]N−1. For

any bidder i, there is a function vi : [0, x̄]N → R that maps a signal profile (xi, x−i) to

bidder i’s ex-post value per click, vi(xi, x−i).

For every bidder i, vi(xi, x−i) satisfies the following assumptions11:

A1 (Value Symmetry): The value function vi(xi, x−i) is symmetric across bidders.

Moreover, the function vi(xi, x−i) is symmetric in its last N − 1 arguments, which

implies that each bidder’s value vi(xi, x−i) is preserved under any permutation of op-

ponents’ signals x−i.

A2 (Value Monotonicity): For any bidder i, vi(xi, x−i) is nonnegative, continuous and

strictly increasing in xi, non-decreasing in every component of x−i:

∂vi(xi, x−i)

∂xi
> 0,

∂vi(xi, x−i)

∂xj
≥ 0, ∀j 6= i (1)

8In this paper, I use masculine pronoun for the auctioneer (search engine) and feminine pronouns
for the bidders (advertisers).

9Following Edelman et al. (2007)[15], the CTR of position k is measured by the expected number
of clicks per period received by the advertiser whose advertisement is placed on position k. The
CTR of each position does not depend on the identity of bidder placed on that position or any other
position.

10Following Edelman et al. (2007)[15], I assume each bidder’s value from getting a click does not
depend on the position of her advertisement.

11Assumptions A1-A5 follow from Milgrom and Weber (1982)[31].
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Bidders have non-trivially interdependent values if the second inequality is strict,

∂vi(xi,x−i)
∂xj

> 0. When the second inequality is not strict, the model breaks down into a

pure private values model.

A3 (Single-crossing Condition): For all i, for all j 6= i, for all signals (x1, x2, · · · , xN),

∂vi(xi, x−i)

∂xi
≥ ∂vj(xj, x−j)

∂xi
(2)

The single-crossing condition is a standard assumption in the literature on mechanism

design under interdependent values. It implies that if bidder i has a higher value than

bidder j at signal profile (xi, x−i), then bidder i must still have a higher value than

bidder j at signal profile (x
′
i, x−i) where x

′
i > xi. This is a necessary condition for

existence of efficient mechanisms. Assumptions A1-A3 also imply that the ranking of

signals is aligned with the ranking of bidders’ ex-post values. The bidder who receives

the k-th highest signal also has the k-th highest ex-post value.

I assume the joint density function f(x1, x2, · · · , xN) satisfies the following assump-

tions:

A4 (Signal Symmetry): f(x1, x2, · · · , xN) is a symmetric function of its arguments.

A5 (Signal Affiliation): The variables x1, x2, · · · , xN are affiliated. For all x, x′ ∈

[0, x̄]N ,

f(x ∨ x′)f(x ∧ x′) ≥ f(x)f(x′) (3)

I restrict attention to symmetric equilibria in this paper12. Given symmetry of the

model, it suffices to study the equilibrium bidding strategy of an arbitrary bidder i. A

critical notion in Milgrom and Weber (1982)[31] is the first order statistic Y1, which is

the random variable denoting the highest signal received by bidder i’s opponents. The

following definition generalizes the first-order statistic notion to position auctions:

12It will be shown that symmetry is a necessary condition for any equilibrium to be efficient in
both one-dimensional assortative position auctions and K-dimensional assortative position auctions
(Lemma 1 and Lemma 4), so restricting attention to symmetric equilibria does not lose generality in
the efficiency analysis.
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Definition 1. For any arbitrary bidder i, let X be the random variable representing

bidder i’s own signal xi. For all k ∈ {1, 2, · · · , K}, let Yk be the k-th order statistic

representing the k-th highest signal received by bidder i’s opponents. Let Gk(yk|xi) be

the conditional distribution of statistic Yk given X = xi, and let gk(yk|xi) be the asso-

ciated density function. Let vk(xi, yk) be bidder i’s expected value of a click conditional

on bidder i’s signal xi and the k-th order statistic that takes value yk:

vk(xi, yk) = E
[
v(xi, x−i)

∣∣X = xi, Yk = yk
]

(4)

For every bidder i, the realization of Yk is the minimum value that the signal of

bidder i can take such that bidder i should win a position no lower than the k-th highest

position in any efficient allocation. When Yk = xi, the term vk(xi, xi) represents bidder

i’s expected value per click conditional on receiving a signal that is just high enough

to win position k:

vk(xi, xi) = E
[
v(xi, x−i)

∣∣X = xi, Yk = xi
]

(5)

It is straightforward to see that for any k, j ∈ {1, 2, · · · , K}, if k < j, then vk(xi, xi) ≤

vj(xi, xi), given any xi. The inequality is strict under non-trivially interdependent

values. That is, for any bidder i, given any signal xi, the expected value per click

conditional on just being able to win a higher ranked position is lower than that

conditional on just being able to win a lower ranked position. This generalizes the

“winner’s curse” concept in Milgrom and Weber (1982) in the following sense: at any

monotonic equilibrium, winning a higher ranked position conveys worse information

than winning a lower ranked position.

I next give the definition of ex-post efficient position auction under interdependent

values:

Definition 2. A position auction is ex-post efficient if it always assigns positions in

the rank ordering of bidders’ ex-post values, given any number of positions K, with

any CTR profile (α1, α2, · · · , αK). Under assumptions A1-A3, a position auction is
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ex-post efficient if it always assigns positions in the rank ordering of bidder’s private

signals.

In the next section, I will explore how the introduction of interdependent values

and the presence of the “winner’s curse” affect efficiency of the two existing position

auctions that are widely used in practice - GSP auctions and VCG-like auctions.

4 Inefficiency of One-dimensional Position Auctions

A unique feature of position auctions is that each bidder’s value from getting a click

does not depend on the position of her advertisement13. Based on this assumption,

the commonly-used GSP auction adopts a simple bidding language that only requires

each bidder to submit a one-dimensional bid based on her value per click from any

position and computes her bid profile by scaling her bid by the click-through rates of

the K positions, instead of asking each bidder to bid for each position separately.

In this section, I show that both GSP auctions and VCG-like auctions with one-

dimensional bidding language can be inefficient when there are at least two positions

under certain CTR profiles. I begin the analysis by characterizing the allocation rule

and payment rule in GSP auctions and VCG-like auctions.

4.1 One-dimensional Position Auctions

A position auction (µ̃, p̃) that adopts one-dimensional bids (b1, b2, · · · , bN) ∈ RN ,

in which bi ∈ R represents bidder i’s bid per click for any position, is called a one-

dimensional position auction. The allocation rule µ̃i(b1, b2, · · · , bN) =(
µ̃

(1)
i (b1, b2, · · · , bN), µ̃

(2)
i (b1, b2, · · · , bN), · · · , µ̃(K)

i (b1, b2, · · · , bN)
)

is a vector ofK func-

tions, in which µ̃
(k)
i (b1, b2, · · · , bN) : RN → [0, 1] maps a profile of bids (b1, b2, · · · , bN)

13Goldman and Rao (2014)[20] use experimental data to test this assumption and get supportive
result.
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to the probability that bidder i wins position k. The payment rule p̃i(b1, b2, · · · , bN) =(
p̃

(1)
i (b1, b2, · · · , bN), p̃

(2)
i (b1, b2, · · · , bN), · · · , p̃(K)

i (b1, b2, · · · , bN)
)

is a vector of K func-

tions, in which p̃
(k)
i (b1, b2, · · · , bN) : RN → R maps a profile of bids to the payment of

bidder i for position k.

For an arbitrary bidder i, given her opponents’ bids b−i, define b̂k(b−i) as the k-

th highest bid in b−i, which implies b̂1(b−i) ≥ b̂2(b−i) ≥ · · · ≥ b̂K(b−i). For any

k ≥ 1, if there are n ≥ 2 equivalent k-th highest bids in b−i, then b̂k(b−i), b̂
k+1(b−i),

..., b̂k+n−1(b−i) are assigned randomly for those n equivalent bids. A one-dimensional

position auction is assortative if it assigns the k-th highest position to the bidder who

submits the k-th highest bid.

Definition 3. In a one-dimensional position auction (µ̃, p̃), the allocation rule µ̃ is

assortative if for all k ∈ {1, 2, · · · , K},

µ̃
(k)
i (bi, b−i) =

1 if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(6)

Any tie is broken randomly.

Definition 4. The one-dimensional GSP auction is characterized by the one-dimensional

assortative allocation rule and the GSP payment rule given below. For all k ∈ {1, 2, · · · , K},

p̃
G,(k)
i (bi, b−i) =

αkb̂
k(b−i) if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(7)

Next, I define a VCG-like position auction format called one-dimensional VCG auc-

tion that is analogous to the second-price auction under the context of interdependent

values single-unit auction in Milgrom and Weber (1982)[31].

Definition 5. The one-dimensional VCG auction is characterized by the one-dimensional

assortative allocation rule and a VCG-like payment rule given below. For all k ∈
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{1, 2, · · · , K},

p̃
V,(k)
i (bi, b−i) =


∑K

j=k(αj − αj+1)b̂j(b−i) if b̂k(b−i) ≤ bi < b̂k−1(b−i)

0 else

(8)

Although the single-unit second-price auction analyzed by Milgrom and Weber

(1982)[31] admits a Bayesian equilibrium that always implements efficient allocation

under assumptions A1-A3, I will show that an analogous result does not exist for the

one-dimensional VCG auction with multiple positions and non-trivially interdependent

values.

4.2 Characterization of Equilibrium

I start the efficiency analysis by providing a necessary and sufficient condition

for existence of an efficient Bayesian equilibrium in any one-dimensional assortative

position auction.

Lemma 1. A one-dimensional position auction (µ̃, p̃) with assortative allocation rule

is efficient if and only if there exists a symmetric equilibrium in which each bidder’s

bidding strategy β(xi) is strictly increasing in xi, for any number of positions K, with

any CTR profile (α1, α2, · · · , αK).

Proof. See Appendix.

I will next develop the main result of this section: both the one-dimensional GSP

auction and the one-dimensional VCG auction can be inefficient when bidders have

interdependent values. Note that it is sufficient to show inefficiency can occur with K =

2 positions. For both of the one-dimensional GSP auction (G) and the one-dimensional

VCG auction (V), I first provide a necessary condition for any monotonic bidding

strategy βL(xi) to be a Bayesian equilibrium of the auction L ∈ {G, V } with two
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positions, and then finish the analysis by showing that the unique βL(xi) characterized

by this equilibrium condition cannot be monotonic under some CTR profiles.

Lemma 2. In the one-dimensional GSP auction with two positions, if an efficient

Bayesian equilibrium bidding strategy βG(xi) exists, then βG(xi) is characterized as

below:

For all xi ∈ [0, x̄], βG(xi) satisfies the Volterra equation

βG(xi) =
g1(xi|xi)

[
(α1 − α2)v1(xi, xi) + α2

∫ xi
0
βG(y2)g2|1(y2|xi, xi)dy2

]
+ g2(xi|xi)α2v

2(xi, xi)

α1g1(xi|xi) + α2g2(xi|xi)
(9)

Proof. See Appendix.

Lemma 3. In the one-dimensional VCG auction with two positions, if an efficient

Bayesian equilibrium bidding strategy βV (xi) exists, then βV (xi) is characterized as

below:

For all xi ∈ [0, x̄],

βV (xi) =
g1(xi|xi)(α1 − α2)v1(xi, xi) + g2(xi|xi)α2v

2(xi, xi)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(10)

Proof. See Appendix.

To better understand the characterization of equilibria in Lemma 2 and Lemma 3,

let ΠL
1 (xi, y1, y2) and ΠL

2 (xi, y1, y2) denote the expected payoffs from winning position

1 and 2 in auction L ∈ {G, V } respectively, given the realizations of X = xi, Y1 =

y1, Y2 = y2. The equilibrium bidding strategy βG(xi) characterized in Lemma 2 is
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derived from the following equilibrium condition:

g1(xi|xi)
[
(α1 − α2)v1(xi, xi)− α1β

G(xi) + α2

∫ xi

0

βG(y2)g2|1(y2|xi, xi)dy2

]
︸ ︷︷ ︸

E[ΠG
1 −ΠG

2 |X=xi,Y1=xi]

+ g2(xi|xi)
[
α2v

2(xi, xi)− α2β
G(xi)

]
︸ ︷︷ ︸

E[ΠG
2 |X=xi,Y2=xi]

= 0

(11)

Similarly, the equilibrium bidding strategy βV (xi) characterized in Lemma 3 is

derived from the following equilibrium condition:

g1(xi|xi)
[
(α1 − α2)

(
v1(xi, xi)− βV (xi)

)]︸ ︷︷ ︸
E[ΠV

1 −ΠV
2 |X=xi,Y1=xi]

+g2(xi|xi)
[
α2

(
v2(xi, xi)− βV (xi)

)]︸ ︷︷ ︸
E[ΠV

2 |X=xi,Y2=xi]

= 0

(12)

Note that in the special case of independent private values where vk(xi, xi) = xi

for all k, the equilibrium of the one-dimensional VCG auction is given by βV (xi) = xi,

consistent with the dominant strategy equilibrium in the VCG auction under indepen-

dent private values. In the special case of α2 = 0, the equilibrium βV (xi) = v1(xi, xi) is

consistent with the symmetric equilibrium of the second-price auction in Milgrom and

Weber (1982)[31]. In the special case of α1 = α2, the equilibrium βV (xi) = v2(xi, xi) is

consistent with the equilibrium of the uniform-price auction with single-unit demands.

Equations (11) and (12) imply that in both one-dimensional GSP auctions and one-

dimensional VCG auctions with two positions, for an arbitrary bidder i with signal xi,

the net impact of winning position 1 instead of position 2 on the margin of Y1 = xi

and winning position 2 instead of nothing on the margin of Y2 = xi weighted by

corresponding probability masses must equal zero at any efficient equilibrium. For all

xi ∈ [0, x̄],

g1(xi|xi)E
[
ΠL

1−ΠL
2

∣∣∣X = xi, Y1 = xi

]
+g2(xi|xi)E

[
ΠL

2

∣∣∣X = xi, Y2 = xi

]
= 0, L ∈ {G, V }

(13)
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The intuition behind this equilibrium condition is that in a one-dimensional as-

sortative position auction, for any bidder i, increasing bid increases the probability

of winning position 1 instead of position 2 and the probability of winning position 2

instead of nothing at the same time, so each bidder’s optimal strategy βL(xi) must

balance the trade-offs between every pair of adjacent positions at corresponding mar-

gins. I next show that the unique βL(xi) satisfying this equilibrium condition cannot

be monotonic under some CTR profile, for both L = G, V .

4.3 Efficiency Analysis

The following two propositions present the main result of section 4:

Proposition 1. For any value function vi(xi, x−i) satisfying assumptions A1-A3,

there exists some number of positions K with some CTR profile under which no efficient

Bayesian equilibrium exists in the one-dimensional GSP auction.

Proof. See Appendix.

Proposition 2. For any non-trivially interdependent value function vi(xi, x−i) sat-

isfying assumptions A1-A3 and ∂vi(xi,x−i)
∂xj

6= 0 for j 6= i, there exists some number

of positions K with some CTR profile under which no efficient Bayesian equilibrium

exists in the one-dimensional VCG auction.

Proof. See Appendix.

The intuition behind Proposition 1 and Proposition 2 is that in both one-dimensional

GSP auctions and one-dimensional VCG auctions with two positions, there exists some

CTR profile under which the superior position is less desirable than the inferior po-

sition given expected payoffs, which leads to differential bid-shading incentives across

bidders and results in non-existence of monotonic equilibrium bidding strategy. The

following analysis elaborates this intuition in each auction.
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The source of inefficiency of one-dimensional GSP auctions comes from both its

simple payment rule and the presence of the generalized “winner’s curse” under in-

terdependent values. In a one-dimensional GSP auction with two positions, when the

click rate of the second position is close to that of the first position, each bidder’s

expected payoff conditional on winning the first position is lower than that conditional

on winning the second position for two reasons. First, a bidder receives similar number

of clicks from winning either position but pays a much higher price for each click if she

wins the first position given the GSP payment rule. Second, the expected value for

every click conditional on winning a higher ranked position is lower than that condi-

tional on winning a lower ranked position. Therefore, at any monotonic equilibrium,

the second position is more desirable than the first position when α2 is sufficiently close

to α1. Under the one-dimensional bidding language, each bidder is forced to submit

the same bid for both positions, so the equilibrium bid must balance net trade-offs

between all pairs of adjacent positions weighted by corresponding probability masses

gk(xi|xi) that varies with signal xi, as shown in equation (13). Because the weight

attached to E[ΠG
1 − ΠG

2 |X = xi, Y1 = xi] is higher for bidders with higher signals

xi compared to those with lower signals, the bid-shading incentive is stronger for the

former. This differentiated bid-shading incentive across bidders’ signals can lead to

violation of monotonicity in the unique equilibrium βG(xi) characterized in Lemma 2.

Therefore, a symmetric and strictly increasing equilibrium bidding strategy does not

exist under certain CTR profiles, which implies the inefficiency of the GSP auction.

Proposition 1 not only confirms the inefficiency of the GSP auction under private

values as pointed out by Gomes and Sweeney (2014)[21], but also identifies an addi-

tional source of inefficiency under the broader information structure of interdependent

values. The non-existence of monotonic equilibrium not only comes from the oversim-

plified GSP payment rule, but also comes from the oversimplified single-dimensional

bidding language. Proposition 2 provides further support for this argument by showing

that with the one-dimensional bidding language, simply modifying the GSP payment

rule to the more complicated VCG-like payment rule does not eliminate inefficiency

under interdependent values, as differentiated bid-shading incentives across bidders
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still exist in the one-dimensional VCG auction.

The source of inefficiency of one-dimensional VCG auctions arises from the gener-

alized “winner’s curse” under interdependent values. Similar to the one-dimensional

GSP auction, the weight attached to trade-offs between each pair of adjacent posi-

tions gk(xi|xi) varies in xi in the one-dimensional VCG auction. Under the VCG-

like payment rule, it is optimal for each bidder to bid her true expected value per

click conditional on Y2 = xi if the probability of winning the first position is zero

so that only the trade-off between winning the second position and nothing needs to

be considered. However, for any bidder who receives a signal xi > 0, there is pos-

itive probability of winning the first position at any monotonic equilibrium. With

non-trivially interdependent values, the expected value vk(xi, xi) differs across posi-

tions, with v1(xi, xi) < v2(xi, xi) under the generalized “winner’s curse.” Therefore,

every bidder with xi > 0 shades bid below v2(xi, xi). Bidders with higher signals have

stronger bid-shading incentive, since they need to weigh the impact of the generalized

“winner’s curse” more significantly given that they are more likely to win the first

position when other bidders bid monotonically. This differentiated bid-shading incen-

tive can lead to non-monotonicity of the unique equilibrium bidding strategy βV (xi)

characterized in Lemma 3, which implies that the one-dimensional VCG auction can

also be inefficient under some CTR profile. Moreover, the non-existence of monotonic

equilibrium in the one-dimensional VCG auction also tend to occur when α2 is close

to α1, as the bid-shading incentive under the generalized “winner’s curse” is amplified

when the quality of the superior position is not significantly better than the quality

of the inferior position. In addition to inefficiency, another problem with the one-

dimensional GSP and VCG auctions is that the unique equilibrium bidding strategy is

very complicated under interdependent values, which may further decrease efficiency

when bidders are not sophisticated enough and deviate from the equilibrium strategies

by mistake.

To summarize this section, it can be concluded that a common source of inefficiency

of the one-dimensional GSP auction and the one-dimensional VCG auction comes
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from the fact that bidders have bid-shading incentives to avoid winning the highest

ranked position, while both auctions use a simple one-dimensional bidding language

that restrict bidders to submit the same bid for all positions. This restriction requires

each bidder’s equilibrium bid to balance the net trade-offs between all pairs of adjacent

positions on different margins, which is impossible for any monotonic bidding strategy

under certain CTR profiles. It is natural to conjecture that allowing bidders to submit

different bids for each position such that the equilibrium bid for each position k balances

only the trade-off between position k and position k + 1 conditional on Yk = xi may

resolve the inefficiency problem. The next section confirms this conjecture.

5 Efficiency of K-dimensional Position Auctions

In this section, I propose a modification of the one-dimensional GSP auction and

the one-dimensional VCG auction by allowing each bidder to submit a vector of K-

dimensional bid for K positions. I show that both modified auctions have unique

efficient Bayesian equilibria given any number of positions, with any CTR profile.

Moreover, the Generalized English Auction that implicitly adopts a K-dimensional

bidding language has a unique efficient ex-post equilibrium.

5.1 K-dimensional Position Auctions

I first construct a class of position auctions that adopts a K-dimensional bid-

ding language and a K-dimensional assortative allocation rule that corresponds to

the assortative allocation rule in one-dimensional position auctions. A position auc-

tion (µ, p) that adopts K-dimensional bids (b1, b2, · · · , bN) ∈ RK × RN , in which

bi ∈ RK represents bidder i’s per-click bid for every position k ∈ {1, 2, · · · , K},

is called a K-dimensional position auction. The allocation rule µi(b1, b2, · · · , bN) =(
µ

(1)
i (b1, b2, · · · , bN), µ

(2)
i (b1, b2, · · · , bN), · · · , µ(K)

i (b1, b2, · · · , bN)
)

is a vector ofK func-

tions, in which µ
(k)
i (b1, b2, · · · , bN) : RK×RN → [0, 1] maps a profile of bids (b1, b2, · · · , bN)
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to the probability that bidder i wins position k. The payment rule pi(b1, b2, · · · , bN) =(
p

(1)
i (b1, b2, · · · , bN), p

(2)
i (b1, b2, · · · , bN), · · · , p(K)

i (b1, b2, · · · , bN)
)

is a vector of K func-

tions, in which p
(k)
i (b1, b2, · · · , bN) : RK×RN → R maps a profile of bids to the payment

of bidder i for position k.

For any position k, define Sk(b1, b2, · · · , bN) as the set of bidders who should win

some position strictly above the k-th highest position at bidding profile (b1, b2, · · · , bN)

according to the allocation rule of the auction:

Sk(b1, b2, · · · , bN) =
{
j ∈ {1, 2, · · · , N}

∣∣∃ k′ < k s.t. µ
(k′)
j (bj, b−j) = 1

}
(14)

For any arbitrary bidder i, given any profile of K-dimensional bids (bi, b−i), define

max
{
bk−i/Sk(bi,b−i)

}
as the highest bid for position k among bidder i’s opponents who

do not win any position above k. A K-dimensional position auction is assortative if

its allocation rule is characterized by the following definition:

Definition 6. In a K-dimensional position auction (µ, p), the allocation rule µ is

assortative if for all k ∈ {1, 2, · · · , K},

µ
(k)
i (bi, b−i) =

1 if i /∈ Sk, max
{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(15)

Any tie is broken randomly.

In an assortative K-dimensional position auction (µ, p), each bidder submits a vec-

tor of K bids (b1
i , b

2
i , · · · , bKi ) simultaneously in a sealed-bid format. The auctioneer

collects all bids at once and assigns the first position to the bidder who submits the

highest bid for position 1, the second position to the bidder who submits the highest

bid for position 2, among those who do not win position 1, etc. Once a bidder is

assigned a position k, her bids for lower positions bji with j > k will not be considered

in the allocation of lower positions.

I next construct two assortative K-dimensional position auctions that can be viewed
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as modified one-dimensional GSP and VCG auction, respectively. I call these auctions

K-dimensional GSP auction and K-dimensional VCG auction.

Definition 7. The K-dimensional GSP auction is characterized by the assortative K-

dimensional allocation rule and the payment rule given below. For all k ∈ {1, 2, · · · , K},

p
G,(k)
i (bi, b−i) =

αk max
{
bk−i/Sk(bi,b−i)

}
if i /∈ Sk, max

{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(16)

Definition 8. The K-dimensional VCG auction can be characterized by the assor-

tative K-dimensional allocation rule and the payment rule given below. For all k ∈

{1, 2, · · · , K},

p
V,(k)
i (bi, b−i) =


∑K

j=k(αj − αj+1) max
{
bj−i/Sj(bi,b−i)

}
if i /∈ Sk, max

{
bk−i/Sk(bi,b−i)

}
≤ bki

0 else

(17)

In addition to the two K-dimensional position auctions proposed above, there ex-

ists another auction that also effectively uses a K-dimensional bidding language - the

Generalized English Auction characterized by Edelman et al. (2007)[15] also implicitly

allows bidders to condition their bids on positions. In a Generalized English Auction,

there is a continuously ascending clock showing the current price. Initially, all ad-

vertisers are in the auction. An advertiser can drop out at any time, and her bid is

the price on the clock when she drops out. The auction ends when there is only one

bidder left. This last bidder wins the first position, and her per click payment equals

to the next-to-last bidder’s drop-out price. The next-to-last bidder wins the second

position, and her per click payment equals to the third highest bid, etc. Any tie is

broken randomly when bidders drop out simultaneously. Since all drop-out prices are

observable, each bidder can update bid strategy every time an opposing bidder drops

out, which implicitly allows for a K-dimensional bidding language.
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5.2 Characterization of Equilibria and Efficiency Analysis

To begin the efficiency analysis of K-dimensional position auctions, I first provide

a necessary and sufficient condition for any K-dimensional assortative position auction

to be efficient:

Lemma 4. A K-dimensional position auction (µ, p) with assortative allocation rule

is efficient if and only if given any number of positions K, there exists a symmetric

equilibrium in which each bidder’s bidding strategy
(
β1(xi), β2(xi), · · · , βK(xi)

)
satisfies

β
′

k(xi) > 0 for every position k ∈ {1, 2, · · · , K}, under any CTR profile (α1, α2, · · · , αK).

Proof. See Appendix.

Next, I develop the main result of this section: the K-dimensional GSP auction, the

K-dimensional VCG auction, and the Generalized English Auction are always efficient

given any value function satisfying assumptions A1-A3, for any number of positions

K, with any CTR profile. I first characterize the unique symmetric equilibria of the

K-dimensional GSP auction, the K-dimensional VCG auction and the Generalized

English Auction. It will be shown that the equilibria of all three auctions satisfy the

necessary and sufficient condition in Lemma 4.

5.2.1 Equilibrium of K-dimensional GSP Auction

The unique symmetric Bayesian equilibrium bidding strategy in the K-dimensional

GSP auction is given in Proposition 3:

Proposition 3. Define the K-dimensional bidding strategy β(xi) =
(
β1(xi), β2(xi), · · · , βK(xi)

)
as follows:

βK(xi) = vK(xi, xi) (18)
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for the last position K.

βk(xi) = vk(xi, xi)−
αk+1

αk

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1

(
yk+1

∣∣X = xi, Yk = xi
)]

(19)

for any position k ∈ {1, 2, · · · , K − 1}.

Let b∗i = β(xi) =
(
β1(xi), β2(xi), · · · , βK(xi)

)
for each bidder i, then the n-tuple of

strategies (b∗1, b
∗
2, · · · , b∗N) is a Bayesian Nash equilibrium of the K-dimensional GSP

auction.

Proof. See Appendix.

Proposition 3 shows that the equilibrium bid for the last position K in the K-

dimensional GSP auction is the expected value per click conditional on receiving a

signal just high enough to win the last position, Yk = xi. On the other hand, the

equilibrium bid for any position above the last position in the K-dimensional GSP

auction is the expected value per click subtracted by the expected payoff from winning

the next position divided by αk, conditional on Yk = xi. The subtracted term can be

interpreted as the per-click opportunity cost of winning position k. Since βK(xi) =

vK(xi, xi) is strictly increasing in xi, and

dβk(xi)

dxi
=
(

1−αk+1

αk

)∂vk(xi, xi)
∂xi

+
αk+1

αk
βk+1(xi)gk+1(xi|xi, xi) > 0, ∀k ∈ {1, 2, · · · , K−1}

(20)

The symmetric equilibrium bidding strategy βk(xi) for every position k is strictly

increasing in xi. According to Lemma 4, the K-dimensional GSP auction is always

efficient.

Corollary 1. The K-dimensional GSP auction always implements the ex-post efficient

allocation in a symmetric Bayesian equilibrium given any value function vi(xi, x−i)

satisfying assumptions A1-A3, for any number of positions K, with any CTR profile

(α1, α2, · · · , αK).
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To better understand the equilibrium characterized in Proposition 3, let ΠG
k (xi, y1, · · · , yN−1)

denote the payoff of winning position k given realizations X = xi, Y1 = y1, · · · , YN−1 =

yN−1 in the K-dimensional GSP auction. The equilibrium bidding strategy
(
β1(xi), β2(xi), · · · , βK(xi)

)
solves

αk

[
vk(xi, xi)− βk(xi)

]
︸ ︷︷ ︸

E[ΠG
k |X=xi,Yk=xi]

= αk+1

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk+1|xi, xi

)]
︸ ︷︷ ︸

E[ΠG
k+1|X=xi,Yk=xi]

, ∀k ∈ {1, 2, · · · , K}

(21)

which implies that at the symmetric equilibrium of the K-dimensional GSP auction,

each bidder should be indifferent between winning position k and position k + 1 con-

ditional on Yk = xi, at which value her signal is just high enough to win position k,

for any position k ∈ {1, 2, · · · , K}.

5.2.2 Equilibrium of K-dimensional VCG Auction

The unique symmetric Bayesian equilibrium bidding strategy in the K-dimensional

VCG auction is given by Proposition 4:

Proposition 4. Let βk(xi) = vk(xi, xi) for all k ∈ {1, 2, · · · , K}. Let b∗i = β(xi) =

(β1(xi), β2(xi), · · · , βK(xi)), then the n-tuple of strategies (b∗1, b
∗
2, · · · , b∗N) is a Bayesian

Nash equilibrium of the K-dimensional VCG auction.

Proof. See Appendix.

Since vk(xi, xi) is strictly increasing in xi for all k ∈ {1, 2, · · · , K}, the K-dimensional

VCG auction is always efficient.

Corollary 2. The K-dimensional VCG auction always implements the ex-post efficient

allocation in a symmetric Bayesian equilibrium given any value function vi(xi, x−i)

satisfying assumptions A1-A3, for any number of positions K, with any CTR profile

(α1, α2, · · · , αK).
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To better understand the equilibrium bidding strategy characterized in Proposition

4, let ΠV
k (xi, y1, · · · , yN−1) denote the payoff of winning position k given realizations

X = xi, Y1 = y1, · · · , YN−1 = yN−1 in the K-dimensional VCG auction. The equilib-

rium bidding strategy
(
β1(xi), β2(xi), · · · , βK(xi)

)
in the K-dimensional VCG auction

solves

(αk − αk+1)
[
vk(xi, xi)− βk(xi)

]
︸ ︷︷ ︸

E[ΠV
k −ΠV

k+1|X=xi,Yk=xi]

= 0, ∀k ∈ {1, 2, · · · , K} (22)

which implies that at the equilibrium of K-dimensional VCG auction, each bidder with

signal xi is indifferent between winning position k and position k+ 1 when Yk = xi, for

all position k. Comparing equation (21) and equation (22), it follows that the equilibria

of K-dimensional GSP auction and K-dimensional VCG auction can be characterized

by the same condition:

E
[
ΠL
k − ΠL

k+1

∣∣∣X = xi, Yk = xi

]
= 0, ∀ k ∈ {1, 2, · · · , K}, ∀ L ∈ {G, V } (23)

Equation (23) shows that with K-dimensional bidding language, each bidder sub-

mits K separate bids such that the bid for position k balances only the trade-off

between position k and position k + 1 conditional on Yk = xi, in contrast to the equi-

librium condition in one-dimensional position auctions characterized by equation (13).

The differentiated bid-shading incentive across bidders’ signals in the one-dimensional

auctions is replaced by the differentiated bid-shading incentive across positions in the

K-dimensional auctions, which resolves the inefficiency problem.

Comparing the K-dimensional position auctions to their one-dimensional counter-

parts also demonstrates that adopting a K-dimensional bidding language simplifies

each bidder’s equilibrium bidding strategy. The equilibrium bidding strategy of the

K-dimensional auctions characterized in Proposition 3 and Proposition 4 are easier to

compute compared to the equilibrium of the one-dimensional counterparts character-

ized in Lemma 2 and Lemma 3, which implies that adopting a more complicated auction

design can actually simplifies bidders’ equilibrium bidding strategy. The trade-off be-

tween simplicity in auction design and simplicity in equilibrium bidding strategy can
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also be shown by comparing the equilibrium of the K-dimensional GSP auction and K-

dimensional VCG auction: the K-dimensional GSP auction has a simpler payment rule

but a more complicated equilibrium bidding strategy compared to the K-dimensional

VCG auction.

The next example provides an illustration of the Bayesian equilibrium bidding

strategies in the K-dimensional VCG auction and K-dimensional GSP auction.

Example 1. Consider the K-dimensional VCG auction and K-dimensional GSP auc-

tion with K = 2 positions and N = 3 bidders, with CTR profile normalized to (1, α2).

The bidders’ private signals are independently and identically drawn from the uniform

distribution on [0, 1]. Bidder i’s value per click vi is a function of her own signal xi

and her opponents’ signals xj, xk:

vi(xi, xj, xk) = λxi +
1− λ

2

(
xj + xk

)
, λ ∈

[1

3
, 1
]

(24)

Figure 1 plots the equilibrium bidding strategy
(
βV1 (x), βV2 (x)

)
in the K-dimensional

VCG auction and
(
βG1 (x), βG2 (x)

)
in the K-dimensional GSP auction, under different

values of λ ∈ {1, 1
2
, 1

3
} and α2 ∈ {0.75, 0.25}.

Figure 1 provides two main insights. First, comparing the equilibria under val-

ues of λ = 1, 1
2
, 1

3
given the same α2 illustrates the impact of increasing degree of

interdependency among bidders’ values on the equilibria of the two auctions. Since

βL1 (xi) ≤ βL2 (xi) for both auctions L ∈ {G, V } under any α2, the equilibrium bid of

any bidder for position 1 is weakly lower than that for position 2 in both auctions. The

difference
(
βL2 (xi)−βL1 (xi)

)
is increasing in xi in the K-dimensional GSP auction, while

stays constant in xi in the K-dimensional VCG auction. Moreover,
(
βL2 (xi)− βL1 (xi)

)
is greater in both auctions when λ is lower, which means the degree of bid-shading for

position 1 is more significant in both auctions when the degree of interdependency in

values is stronger and the impact of the generalized “winner’s curse” is more significant.

Second, comparing the equilibria under α2 = 0.75 to α2 = 0.25 under the same

value of λ shows the impact of increasing difference in CTR between the superior
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Figure 1: Equilibrium Bidding Strategies in K-dimensional VCG and GSP Auction
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position and the inferior position on the equilibria of the two auctions. It can be

shown that under the same λ,
(
βG2 (xi)−βG1 (xi)

)
increases in α2 as well as in xi in the

K-dimensional GSP auction, while
(
βV2 (xi) − βV1 (xi)

)
remains unaffected by α2 and

stays constant in xi in the K-dimensional VCG auction. Therefore, the bid-shading

incentive for position 1 is greater when the CTR of two positions are closer in the

K-dimensional GSP auction, while the equilibrium bids are unaffected by CTR in the

K-dimensional VCG auction.

5.2.3 Equilibrium of Generalized English Auction

The next proposition characterizes the unique symmetric equilibrium of the Gen-

eralized English Auction (GEA) under interdependent values and shows this dynamic

auction with an implicit K-dimensional bidding language is also efficient.

At any time in the auction, let n denote the number of bidders who are still active

in the auction, and (N − n) denote the number of bidders who have dropped out. Let

(pN , pN−1 · · · , pn+1) denote the drop-out prices of the (N − n) bidders, in which pN is

the bid of the first drop out bidder, and pn+1 is the bid of the last drop out bidder at

current time, so pN ≤ pN−1 ≤ · · · ≤ pn+1. When there are n remaining bidders in the

auction, the equilibrium strategy for bidder i specifies her optimal drop out price given

her private signal xi and a history of drop out prices (pN , pN−1, · · · , pn+1). Define

v(k)(xi, yk, yk+1, · · · , yN−1) = E
[
vi

∣∣∣X = xi, Yk = yk, Yk+1 = yk+1, · · · , YN−1 = yN−1

]
(25)

as bidder i’s expected value conditional on her own signal X = xi and the realiza-

tion of all of the (N − k) lowest signals among opponents’ signals, Yk = yk, Yk+1 =

yk+1, · · · , YN−1 = yN−1. The unique symmetric equilibrium of the GEA under interde-

pendent values is characterized in Proposition 5:
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Proposition 5. Define strategy b∗ = (b∗N , b
∗
N−1, · · · , b∗2) as follows:

b∗N(xi) = v(K)(xi, xi, · · · , xi︸ ︷︷ ︸
(N −K)

)

b∗n(xi|pN , · · · , pn+1) =
v(K)(xi, xi, · · · , xi︸ ︷︷ ︸

(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

) if (K + 1) ≤ n ≤ (N − 1)

v(n−1)(xi, xi, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)− αn

αn−1

[
v(n−1)(xi, xi, yn, yn+1, · · · , yN−1︸ ︷︷ ︸

(N − n) lowest signals

)− pn+1

]
if n ≤ K

(26)

in which yn, yn+1, · · · , yN−1 are calculated from

b∗N(yN−1) = pN

b∗N−1(yN−2|pN) = pN−1

· · ·

b∗n+1(yn|pN , · · · , pn+2) = pn+1

(27)

The N-tupple bidding strategy (b∗, ..., b∗) is an ex-post equilibrium of the Generalized

English Auction under interdependent values.

Proof. See Appendix.

Since the equilibrium bidding strategy b∗n(xi) at any stage of the GEA is increasing

in xi, the GEA is also efficient.

Corollary 3. The Generalized English Auction always implements the ex-post effi-

cient allocation in an ex-post equilibrium, given any value function vi(xi, x−i) sat-

isfying assumptions A1-A3, for any number of positions K, with any CTR profile

(α1, α2, · · · , αK).

To better understand the equilibrium of GEA, let ΠE
k (xi, y1, y2, · · · , yN−1) be the

payoff from winning position k conditional on X = xi, Y1 = y1, · · · , YN−1 = yN−1. The

33



equilibrium condition of GEA characterized in Proposition 5 can be interpreted as

E
[
ΠE
K

∣∣∣X = xi, YK = xi, · · · , YN = xi

]
= 0, if n = N

E
[
ΠE
K

∣∣∣X = xi, YK = xi, · · · , Yn−1 = xi, Yn = yn, · · · , YN = yN

]
= 0, if K + 1 ≤ n ≤ N − 1

E
[
ΠE
k − ΠE

k+1

∣∣∣X = xi, Yk = xi, Yk+1 = yk+1, · · · , YN = yN

]
= 0, if n = k + 1 ≤ K

(28)

which implies that the optimal drop-out price at any time of the auction must balance

the trade-off between winning position k and position k + 1 conditional on Yk = xi,

given the profile of revealed signals from the history of drop-out prices. When there

are more bidders than positions left in the auction, each bidder’s optimal drop-out

strategy specifies the price at which she is indifferent between winning the lowest

position and winning nothing. When there are (weakly) fewer bidders than positions

left in the auction, each bidder’s optimal drop-out strategy specifies the price at which

she is indifferent between winning the next position higher than the current lowest

position and winning the current lowest position at the most recent drop-out price.

Comparing the equilibrium condition characterized in (28) to the equilibrium condition

characterized in (23), it can be shown that the equilibrium condition of GEA is similar

to the equilibrium condition of the K-dimensional GSP auction and the K-dimensional

VCG auction, while the only difference comes from that each remaining bidder can

update her belief from revealed signals of drop-out bidders in GEA. Despite of its

efficiency, the GEA cannot be practically implemented in real-time sponsored search

market. Nevertheless, by adopting a K-dimensional bidding language, both the GSP

auction and the VCG-like auction can implement the same efficient allocation as the

GEA under similar equilibrium conditions.

6 Revenue of K-dimensional Position Auctions

In this section, I first provide a revenue ranking of the three efficient K-dimensional

position auctions under interdependent values. Then I characterize the optimal posi-

tion auction as a direct revelation mechanism and compare the expected revenues of
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the three efficient auctions to the optimal revenue subject to no reserve price.

6.1 Revenue Ranking

The following proposition gives the revenue ranking of the K-dimensional GSP

auction, the K-dimensional VCG auction and the GEA.

Proposition 6. The expected revenue of the Generalized English Auction is higher than

the expected revenue of the K-dimensional VCG auction, which in turn equals to the

expected revenue of the K-dimensional GSP auction, for any value function vi(xi, x−i)

and distribution of signals F (x1, x2, · · · , xN) satisfying assumptions A1-A5.

RGEA ≥ RK−V CG = RK−GSP (29)

Proof. See Appendix.

The intuition behind revenue equivalence of the K-dimensional GSP auction and

the K-dimensional VCG auction is the following. Both auctions are sealed-bid auctions,

so no information is elicited before final allocation and payments are determined. Both

auctions adopt the same K-dimensional assortative allocation rule and some variation

of a “second-price” payment rule under which each bidder’s bid only affect her alloca-

tion but not her payment. In the proof of Proposition 6, it is shown that although each

bidder’s payment in the two auctions depends on her opponents’ bids in different ways,

bidders are able to incorporate different payment rules into their bidding strategies so

that the expected payment for a bidder with the same signal is the same in the two

auctions.

The intuition behind the revenue ranking of the GEA and the K-dimensional VCG

auction comes from the Linkage Principle in Milgrom and Weber (1982)[31]. With

affiliated signals, the dynamic auction performs better than static auctions since part

of the signals are elicited during the drop-out process. On the other hand, with inde-
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pendent signals, the GEA is revenue equivalent to the other two static K-dimensional

position auctions, which gives the following corollary:

Corollary 4. When bidders’ signals are independently and identically distributed, the

Generalized English Auction, the K-dimensional VCG auction and the K-dimensional

GSP auction yield the same expected revenue, for any value function vi(xi, x−i) that

satisfies assumptions A1-A3.

Corollary 4 is consistent with the Revenue Equivalence Theorem in auction the-

ory. When bidders have independent signals, the K-dimensional GSP auction, the

K-dimensional VCG auction and the Generalized English Auction always implement

the same allocation and yield zero expected payoff to the bidder with the lowest signal.

The revenue equivalence follows as a result.

6.2 Revenue Comparison with the Optimal Position Auction

I next characterize the optimal position auction under interdependent values subject

to no reserve price14 and then compare expected revenues of the K-dimensional GSP

auction, the K-dimensional VCG auction and the Generalized English Auction to the

optimal revenue implementable in position auctions subject to no reserve price.

6.2.1 Mechanism Design and Solution Concepts

Under the revelation principle, I characterize the optimal position auction as a

direct mechanism, in which bidders report private signals directly, while the value

function v(xi, x−i) and signal distribution F (x1, x2, · · · , xN) are common knowledge.

To make the expected revenue of the optimal position auction comparable to expected

14Ulku (2013)[37] characterizes the optimal mechanism for allocating a set of heterogeneous items
under interdependent values. The optimal position auction characterized in this paper can be viewed
as a corollary of Ulku (2013)[37] in the special environment of position auctions. The objective is to
compare the revenues of the three efficient auctions to the optimal revenue.
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revenues of the three practical auctions analyzed in section 5, I restrict attention to the

optimal position auction subject to no reserve price. A position auction mechanism

(µ, p) consists of an allocation rule µi(x) and a payment rule pi(x) for every bidder i,

where µi(x) =
(
µ

(1)
i (x), µ

(2)
i (x), · · · , µ(K)

i (x)
)

is the vector of probabilities that bidder

i wins position 1, 2, · · · , K given reported signals x ∈ [0, x̄]N , and pi(x) is the expected

payment of bidder i given reported signals x ∈ [0, x̄]N . In a deterministic mechanism,

µ
(k)
i (x) ∈ {0, 1} for all k and pi(x) is the actual payment.

Given a CTR profile (α1, α2, · · · , αK) and allocation rule µ, the expected click-

through rate qi assigned to bidder i under report x = (x1, x2, · · · , xN) is given by

qi(x) =
K∑
k=1

αkµ
(k)
i (x) (30)

For notational simplicity, I use the expected CTR
{
qi(x)

}N
i=1

instead of N vectors

of expected probabilities
{(
µ

(1)
i (x), µ

(2)
i (x), · · · , µ(K)

i (x)
)}N

i=1
as the allocation rule in

the analysis. I use (q, p) and (µ, p) to refer to the same mechanism interchangeably if

qi(x) =
∑K

k=1 αkµ
(k)
i (x). The feasibility condition of the allocation rule in a position

auction mechanism is defined below:

Definition 9. An allocation rule in the form of µ(x) is feasible if

0 ≤
N∑
i=1

µ
(k)
i (x) ≤ 1, ∀ k, and 0 ≤

K∑
k=1

µ
(k)
i (x) ≤ 1, ∀ i (31)

An allocation rule in the form of q(x) is feasible if qi(x) =
∑K

k=1 αkµ
(k)
i (x) for all i

for some allocation rule µ(x) satisfying condition (31).

For any bidder i with signal xi, the interim utility Ui(xi) is given by

Ui(xi) =

∫
x−i

[
qi(xi, x−i)vi(xi, x−i)− pi(xi, x−i)

]
f−i|i(x−i|xi)dx−i (32)

where ui(xi, x−i) = qi(xi, x−i)vi(xi, x−i) − pi(xi, x−i) is the ex-post utility of bidder i
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given the signal profile (xi, x−i). I now give the definition of two solution concepts:

Definition 10. A position auction mechanism (q, p) is Bayesian incentive compatible

(IC) and individually rational (IR) if for every bidder i, for any true signal xi and any

report x
′
i,

Ui(xi) ≥
∫
x−i

[
qi(x

′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)
]
f−i|i(x−i|xi)dx−i

Ui(xi) ≥ 0

(33)

Definition 11. A position auction mechanism (q, p) is ex-post incentive compatible

(IC) and individually rational (IR) if for every bidder i, for any true signal profile

(xi, x−i) and any report x
′
i,

ui(xi, x−i) ≥ qi(x
′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)

ui(xi, x−i) ≥ 0
(34)

6.2.2 Characterization of the Optimal Position Auction

Given any profile of signals, define bidder i’s marginal revenue MRi(xi, x−i) as

MRi(xi, x−i) = vi(xi, x−i)−
1− Fi(xi|x−i)
fi(xi|x−i)

× ∂vi(xi, x−i)

∂xi
(35)

For any bidder i, given a vector of opponents’ reported signals x−i, define X̂k(x−i)

as the minimum value that bidder i’s signal can take such that bidder i has the k-th

highest MRi among all bidders:

X̂k(x−i) = inf
{
xi

∣∣∣MRi(xi, x−i) ≥ kmaxj 6=i
{
MRj(xj, xi, x−ij)

} }
(36)

in which kmaxj 6=i
{
MRj(xj, xi, x−ij)

}
is value of the k-th highest marginal revenue

among bidder i’s opponents given report x, and x−ij is the vector of signals reported

by bidders other than i and j. The following two regularity conditions are provided such

that the optimal position auction assigns positions in the rank ordering of MRi(xi, x−i)
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given report (xi, x−i).

R1 (Value Regularity): Given any profile of signals x, for any two bidders i, j,

If xi > xj, then vi(xi, xj, x−ij) > vj(xj, xi, x−ij) (37)

Note that R1 is directly implied by assumptions A1-A3.

R2 (MR Monotonicity): Given any report of signals x, for all bidder i,

∂MRi(xi, x−i)

∂xi
> 0, ∀x−i (38)

The next proposition characterizes the optimal position auction subject to no re-

serve price among all ex-post IC and IR mechanisms under R1 and R2.

Proposition 7. Under regularity conditions R1 and R2, suppose the expected CTR

is given by

q∗i (xi, x−i) =

αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(39)

Any tie is broken randomly. Suppose also that the payment rule is given by

p∗i (xi, x−i) = qi(xi, x−i)vi(xi, x−i)−
∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds (40)

Then (q∗, p∗) is an optimal position auction among all the ex-post IC and IR mecha-

nisms subject to no reserve price.

Proof. See Appendix.

Note that in the special case of independent signals, each bidder’s marginal revenue

is given by

MRi(xi, x−i) = vi(xi, x−i)−
1− Fi(xi)
fi(xi)

× ∂vi(xi, x−i)

∂xi
(41)
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as Fi(xi|x−i) = Fi(xi) and fi(xi|x−i) = fi(xi) under independent signals. The next

proposition shows that under R1 and R2, conditional on having no reserve price, the

optimal position auction (q∗, p∗) characterized in proposition 7 is also optimal among

all Bayesian IC and IR mechanisms when signals are independent.

Proposition 8. Under regularity conditions R1 and R2, if signals are independent,

then (q∗, p∗) is an optimal position auction among all the Bayesian IC and IR mecha-

nisms subject to no reserve price.

Proof. See Appendix.

Since all ex-post IC and IR mechanisms are also Bayesian IC and IR mechanisms,

the optimality of (q∗, p∗) under independent signals is stronger.

6.2.3 Revenue Comparison with the Optimal Position Auction

Ausubel (1999)[5] proposes a direct revelation mechanism called the generalized

Vickrey auction for selling homogeneous items efficiently under interdependent values.

I next show the optimal position auction subject to no reserve price characterized in

Proposition 7 can be viewed as a generalized Vickrey auction under the context of

vertically differentiated items with single-demand bidders. Then I will compare the

expected revenue of the Generalized-VCG mechanism to the expected revenues of the

GEA, the K-dimensional GSP auction and the K-dimensional VCG auction.

For an arbitrary bidder i, given a vector of opponents’ bids x−i, let x̂k(x−i) be the

minimum value that bidder i’s signal can take such that bidder i has at least the k-th

highest value among all bidders:

x̂k(x−i) = inf
{
xi

∣∣∣ vi(xi, x−i) ≥ kmaxj 6=i
{
vj(xj, xi, x−ij)

} }
(42)

in which kmaxj 6=i
{
vj(xj, xi, x−ij)

}
is the k-th highest value received by bidder i’s

opponents given report x, and x−ij is the vector of signals reported by bidders other
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than i and j.

Definition 12. Under the context of position auctions, the generalized Vickrey auction

is defined as follows:

qVi (xi, x−i) =

αk if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

pVi (xi, x−i) =


∑K

j=k(αj − αj+1)vi(x̂
j(x−i), x−i) if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(43)

Any tie is broken randomly.

The next proposition shows that the optimal position auction subject to no reserve

price (q∗, p∗) among all ex-post IC and IR mechanisms is equivalent to the generalized

Vickrey auction when an additional regularity condition described below is satisfied:

R3 (MR regularity): For all i, j, given any report x,

if xi > xj, then MRi(xi, xj, x−ij) > MRj(xj, xi, x−ij) (44)

Proposition 9. Under regularity conditions R1, R2 and R3, the optimal position

auction subject to no reserve price among all ex-post IC and IR mechanisms is equiva-

lent to the generalized Vickrey auction. This optimal revenue is weakly higher than the

expected revenue of the GEA, which is in turn weakly higher than the expected revenues

of the K-dimensional GSP auction and the K-dimensional VCG auction.

Proof. See Appendix.

The intuition behind the revenue ranking in Proposition 9 comes from that in the

generalized Vickrey auction, the payment of each bidder depends on the entire reported

signal profile from opposing bidders, while the payment of each bidder only depends on

a subset of opponents’ signals in the GEA, and depends on none of opponents’ signals
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in the K-dimensional GSP auction and the K-dimensional VCG auction. Under the

logic of the Linkage Principle, when signals are affiliated, the expected revenue of

an auction is greater when each bidder’s payment depends on more of its opponents’

signals. The revenue dominance of the generalized Vickrey auction comes from the

additional assumption that the auctioneer must know the value function vi(xi, x−i). As

pointed out by Ausubel and Cramton (2004)[7], this assumption is usually impractical.

In practical auctions where the auctioneer does not know bidders’ value functions, it

is natural to expect lower revenues.

On the other hand, revenue equivalence holds among the generalized Vickrey auc-

tion, the GEA, the K-dimensional GSP auction and the K-dimensional VCG auction

under independent signals:

Corollary 5. When bidders have independent signals, under regularity conditions

R1, R2 and R3, the optimal position auction subject to no reserve price among

all Bayesian IC and IR mechanisms is equivalent to the generalized Vickrey auction.

Moreover, this optimal revenue can be practically implemented by the GEA, the K-

dimensional GSP auction, and the K-dimensional VCG auction.

The main insight from Corollary 5 is that under independent signals and regularity

conditions R1, R2 and R3, the three K-dimensional position auctions dominate the

one-dimensional position auctions in both efficiency and revenue.

7 Conclusions

This paper extends the study of position auctions into the information structure

of interdependent values, which better captures the oligopoly relationship among ad-

vertisers and the uncertainty all advertisers face under continuous demand shocks. I

show that the commonly-used GSP auctions and VCG-like auctions can be inefficient

under this information structure. On the other hand, the Generalized English Auction

introduced by Edelman et al. (2007)[15] as a theoretical modeling tool still retains full
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efficiency. Although it is not feasible to implement the Generalized English Auction

in practice, I show that efficiency can be restored in the GSP auction and the VCG-

like auction by adopting a multi-dimensional bidding language that allows bidders to

condition their bid on position. Moreover, I show that the modified K-dimensional

GSP auction and the K-dimensional VCG auction are revenue equivalent, while the

Generalized English Auction yields higher revenue under linkage principle. With in-

dependent signals, the K-dimensional GSP and VCG auctions can also implement the

optimal revenue subject to no reserve price.

The inefficiency of the GSP auction provides a sharp contrast to previous studies

that favor the GSP auction under complete information. Moreover, it also extends

Gomes and Sweeney (2014)[21]’s result into a broader information structure with new

insights. While the inefficiency result in Gomes and Sweeney (2014)[21] implies that the

oversimplified payment rule in the GSP auction can be problematic under pure private

values, this paper brings some new insights by showing that the oversimplified bidding

language is a more intrinsic problem under every setting when bidders might prefer

winning a lower ranked position to a higher ranked position, and this problem exists

not only in the GSP auction, but also in the VCG-like auction under interdependent

values. The inefficiency of the VCG-like auction provides a contrast to Milgrom and

Weber (1982)[31], who show that the second-price single-unit auction is still efficient

under interdependent values. This is because bidders have differentiated bid-shading

incentives only when there are multiple differentiated positions. With one-dimensional

bidding language, those bidders with higher signals have stronger bid-shading incen-

tives, as they are more likely to win the highest ranked position. By allowing bidders

to condition their bids on positions, bidders do not need to worry about winning a

higher ranked position when submitting their bids for lower ranked positions. The dif-

ferentiated bid-shading incentive across bidders is therefore replaced by differentiated

bid-shading incentives across positions. A bidder with higher signal always bids higher

than a bidder with lower signal for every position, and efficiency follows as a result.

On the other hand, the Generalized English Auction also implicitly adopts a multi-

dimensional bidding language, as it allows bidders to update their strategy within the
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dynamic process. The revenue dominance of the Generalized English Auction is a gen-

eralization of Milgrom and Weber (1982)[31]’s revenue ranking between English auc-

tions and second-price auctions. The revenue equivalence between the K-dimensional

GSP and K-dimensional VCG auctions contribute to the previous literature that com-

pares the GSP auction and the VCG auction under complete information. Putting

together these insights, we can conclude that under interdependent values, adopting a

multi-dimensional bidding language that allows bidders to bid differently across posi-

tions is essential in practical position auctions under both efficiency-maximizing and

revenue-maximizing objectives. This conclusion implies that there exists a trade-off

between simplicity versus efficiency and revenue in auction design. Moreover, compar-

ing the equilibrium of K-dimensional auctions to their one-dimensional counterparts

implies that there also exists a trade-off between simplicity in auction design and sim-

plicity in bidding strategy. These implications contribute to the discussion on the cost

of simplicity in mechanism design in both economics and computer science literature.

In addition to its theoretical contributions, this paper has some practical contribu-

tion by proposing two practical auction formats for allocating sponsored advertising

spaces on a wide range of online platforms, including search engines such as Google

and Yahoo!, online shopping platforms such as Amazon and eBay, online rating and

booking platforms such as Yelp and TripAdvisor, and social media such as Facebook,

Twitter, and Instagram. All of these two-sided platforms share the common charac-

teristics that advertisers competing for the same advertising space are likely selling

substitutable products or services and therefore are subject to demand shocks in the

same market. When interdependency is likely to present in bidders’ values, it may

worth to use the more complicated, multi-dimensional bidding language in GSP and

VCG auctions in order to guarantee efficiency and improve revenue.

This paper points to two future research directions. First, this paper follows pre-

vious literature on position auctions and assumes bidders have single-unit demands.

However, bidders may have multi-unit demands in real position auctions. For example,

an advertiser may demand consecutive slots on the first search result page or demand
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a slot on each of the first three search result pages under a keyword. One natural

extension of this paper is to allow bidders to have multi-unit demands and explore

how to design efficient and optimal position auctions with multi-unit demand bidders.

Second, it would be interesting to conduct an experimental study to test the theoretical

predictions in this paper and quantify the efficiency and revenue changes that result

from adopting a multi-dimensional bidding language in GSP and VCG-like auctions.
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Appendix

Proof of Lemma 1:

Proof. I first show that if an equilibrium bidding strategy in a one-dimensional assor-

tative position auction is symmetric and strictly increasing, then the equilibrium must

be efficient. Let β(x) denote the equilibrium bidding strategy. β
′
(x) > 0 implies that

β(xi) > β(xj) for any xi > xj. Under the assortative ranking rule, bidder i is placed

above bidder j if xi > xj, so the equilibrium allocation must be efficient.

I next show that if an equilibrium of a one-dimensional assortative position auction

is efficient, then the equilibrium bidding strategy must be strictly increasing and sym-

metric across bidders. Suppose an efficient equilibrium
(
β1(x1), β2(x2), · · · , βN(xN)

)
exists in a one-dimensional assortative position auction, then a bidder who receives

signal xi must be placed above a bidder who receives a lower signal xj < xi if both win

some position in equilibrium. For an arbitrary bidder i, take any value x
′
i > xi, then

there is positive probability that some of bidder i’s opponents receive signals between

xi and x
′
i, i.e., there exists j 6= i with signal xj ∈ (xi, x

′
i). Efficiency requires that j is

placed below i when bidder i receives x
′
i, and j is placed above i when i receives xi.

Under the assortative ranking rule, this requires

βj(xj) < βi(x
′

i)

βj(xj) > βi(xi)
(45)

Suppose βi(x
′
i) ≤ βi(xi), then for any value of βj(xj), it is impossible for condition (45)

to hold, which yields a contradiction. Therefore, at any efficient equilibrium, bidder i

must bid strictly higher when receiving signal x
′
i than receiving signal xi, i.e., for every

bidder i, we must have

x
′

i > xi → βi(x
′

i) > βi(xi) (46)

Therefore, every bidder must use a strictly increasing bidding strategy in an efficient

equilibrium, so β
′
i(xi) > 0 for all i.
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Next, suppose there exists an efficient equilibrium that is not symmetric, i.e., there

exists i 6= j s.t. βi(x̂) 6= βj(x̂) at some x̂ ∈ [0, x̄]. Without loss of generality, assume

βi(x̂) < βj(x̂) for some x̂ ∈ [0, x̄]. Since βi(.) and βj(.) are continuous, there exists

some xi, xj ∈ [0, x̄] s.t. xj < x̂ < xi, but βi(xi) < βj(xj). Under the assortative

ranking rule, this means that bidder j who receives the lower signal xj will get a higher

position than bidder i who receives the higher signal xi > xj, which contradicts the

efficiency assumption. Therefore, if an efficient equilibrium exists in a one-dimensional

assortative position auction, then the equilibrium bidding strategy must be symmetric

across bidders, i.e., βi(.) = β(.) for all i.

Proof of Lemma 2:

Proof. Define v1,2(xi, y1, y2) as bidder i’s expected value per click conditional on her

own signal equals to xi, the highest signal among her opponents Y1 equals to y1, the

second highest signal among her opponents Y2 equals to y2:

v1,2(xi, y1, y2) = E
[
vi
∣∣X = xi, Y1 = y1, Y2 = y2

]
(47)

Suppose a monotonic Bayesian equilibrium bidding strategy β(.) exists. For any

arbitrary bidder i, suppose all of i’s opposing bidders follow the monotonic Bayesian

equilibrium bidding strategy β(.). Let β−1(.) denote the inverse function of β(.). Then

bidder i’s best response bid b∗i maximizes

Π(bi|xi) =

∫ β−1(bi)

0

∫ y1

0

α1

[
v1,2(xi, y1, y2)− β(y1)

]
g2,1
i (y2, y1|xi)dy2dy1

+

∫ x̄

β−1(bi)

∫ β−1(bi)

0

α2

[
v1,2(xi, y1, y2)− β(y2)

]
g2,1
i (y2, y1|xi)dy2dy1

(48)
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in which g2,1
i (y2, y1|xi) is the conditional joint density function of (Y2, Y1) given X =

xi. Let g1|2(y1|y2, xi) and g2|1(y2|y1, xi) be conditional marginal densities of Y1 given

(Y2, X) and Y2 given (Y1, X) respectively. Let g1(y1|xi) and g2(y2|xi) be conditional

marginal densities of Y1 and Y2 given X = xi respectively, then g2,1
i (y2, y1|xi) =

g1|2(y1|y2, xi)g2(y2|xi) = g2|1(y2|y1, xi)g1(y1|xi).

Take derivative of the objective function (48) with respect to bi:

dΠ(bi|xi)
dbi

=
g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

α1

[
v1,2(xi, β

−1(bi), y2)− bi
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

− g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

α2

[
v1,2(xi, β

−1(bi), y2)− β(y2)
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

+
g2(β−1(bi)|xi)
β ′(β−1(bi))

∫ x̄

β−1(bi)

α2

[
v1,2(xi, y1, β

−1(bi))− bi
]
g1|2
(
y1

∣∣β−1(bi), xi
)
dy1

(49)

Since β(xi) is an equilibrium, it is optimal for bidder i to bid b∗i = β(xi) when her

opponents follow β(.). Evaluate dΠ(bi)
dbi

at b∗i = β(xi):

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

∫ xi

0

α1

[
v1,2(xi, xi, y2)− β(xi)

]
g2|1(y2|xi, xi)dy2

− g1(xi|xi)
β ′(xi)

∫ xi

0

α2

[
v1,2(xi, xi, y2)− β(y2)

]
g2|1(y2|xi, xi)dy2

+
g2(xi|xi)
β ′(xi)

∫ x̄

xi

α2

[
v1,2(xi, y1, xi)− β(xi)

]
g1|2(y1|xi, xi)dy1

(50)

According to the definition of v1(xi, xi) and v2(xi, xi), equation (50) is equivalent to

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

α1

[
v1(xi, xi)− β(xi)

]
− g1(xi|xi)

β ′(xi)
α2

[
v1(xi, xi)−

∫ xi

0

β(y2)g2|1(y2|xi, xi)dy2

]
+
g2(xi|xi)
β ′(xi)

α2

[
v2(xi, xi)− β(xi)

] (51)

Bidding b∗i = β(xi) maximizes Π(bi|xi) only if dΠ(β(xi)|xi)
dbi

= 0. Setting equation (51) to
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zero and rearrange yields

β(xi) =
g1(xi|xi)

[
(α1 − α2)v1(xi, xi) + α2

∫ xi
0
β(y2)g2|1(y2|xi, xi)dy2

]
+ g2(xi|xi)α2v

2(xi, xi)

α1g1(xi|xi) + α2g2(xi|xi)
(52)

This is a Volterra equation of the second kind. In the one-dimensional GSP Auction

with 2 positions, if a monotonic equilibrium bidding strategy βG(xi) exists, then βG(xi)

must satisfy the Volterra equation (52) for all xi ∈ [0, x̄].

Proof of Lemma 3:

Proof. Suppose a monotonic symmetric Bayesian equilibrium bidding strategy β(.)

exists in the one-dimensional VCG auction. For an arbitrary bidder i, suppose all of

i’s opposing bidders follow the monotonic Bayesian equilibrium bidding strategy β(.).

Let β−1(.) denote the inverse function of β(.). Then bidder i’s best response bid b∗i

maximizes

Π(bi|xi) =

∫ β−1(bi)

0

∫ y1

0

{
α1

[
v1,2(xi, y1, y2)− β(y1)

]
+ α2

[
β(y1)− β(y2)

]}
g2,1
i (y2, y1|xi)dy2dy1

+

∫ x̄

β−1(bi)

∫ β−1(bi)

0

α2

[
v1,2(xi, y1, y2)− β(y2)

]
g2,1
i (y2, y1|xi)dy2dy1

(53)

Take derivative with respect to bi:

dΠ(bi|xi)
dbi

=
g1(β−1(bi)|xi)
β ′(β−1(bi))

∫ β−1(bi)

0

(α1 − α2)
[
v1,2(xi, β

−1(bi), y2)− bi
]
g2|1
(
y2

∣∣β−1(bi), xi
)
dy2

+
g2(β−1(bi)|xi)
β ′(β−1(bi))

∫ x̄

β−1(bi)

α2

[
v1,2(xi, y1, β

−1(bi))− bi
]
g1|2
(
y1

∣∣β−1(bi), xi
)
dy1

(54)

Since β(xi) is an equilibrium, b∗i = β(xi) maximizes Π(bi|xi) for any value of xi.

49



For all xi ∈ [0, x̄], evaluate dΠ(bi|xi)
dbi

at b∗i = β(xi) gives

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

∫ xi

0

(α1 − α2)
[
v1,2(xi, xi, y2)− β(xi)

]
g2|1
(
y2

∣∣xi, xi)dy2

+
g2(xi|xi)
β ′(xi)

∫ x̄

xi

α2

[
v1,2(xi, y1, xi)− β(xi)

]
g1|2
(
y1

∣∣xi, xi)dy1

(55)

According to the definition of v1(xi, xi) and v2(xi, xi), this is equivalent to

dΠ(β(xi)|xi)
dbi

=
g1(xi|xi)
β ′(xi)

(α1 − α2)
[
v1(xi, xi)− β(xi)

]
+
g2(xi|xi)
β ′(xi)

α2

[
v2(xi, xi)− β(xi)

]
(56)

Bidding β(xi) maximizes Π(bi|xi) only if dΠ(β(xi)|xi)
dbi

= 0, which means that bidder

i cannot increase Π(bi|xi) by increasing or decreasing bid from β(xi) by any small

amount. Set dΠ(β(xi)|xi)
dbi

= 0 and rearrange the equation yields

β(xi) =
g1(xi|xi)(α1 − α2)v1(xi, xi) + g2(xi|xi)α2v

2(xi, xi)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(57)

which characterizes the unique equilibrium bidding strategy βV (xi) in the one-dimensional

VCG auction.

Proof of Proposition 1:

Proof. Suppose the unique equilibrium bidding strategy βG(xi) characterized in Lemma

2 is continuous and strictly increasing in xi given any CTR profile (α1, α2). First ob-

serve that since βG(.) is continuous, when xi approaches x̄, the equilibrium bid βG(xi)

characterized in Lemma 2 approaches βG(x̄):

lim
xi→x̄

βG(xi) = βG(x̄) =
(α1 − α2

α1

)
v1(x̄, x̄) +

(α2

α1

)∫ x̄

0

β(y2)g2|1(y2|x̄, x̄)dy2 (58)
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Consider the case when α2 approaches α1, the equilibrium bid βG(x̄) approaches

lim
α2→α1

βG(x̄) =

∫ x̄

0

β(y2)g2|1(y2|x̄, x̄)dy2 (59)

which implies that βG(x̄) satisfies

lim
α2→α1

∫ x̄

0

(
βG(x̄)− βG(y2)

)
g2|1(y2|x̄, x̄)dy2 = 0 (60)

However, equation (60) yields a contradiction to the assumption that βG(xi) is

strictly increasing in xi, since for any strictly increasing function, βG(x̄) > βG(y2) for

any 0 ≤ y2 < x̄ and βG(x̄) = βG(y2) at y2 = x̄. Therefore, it is impossible for any

strictly increasing βG(xi) to satisfy equation (60) at xi = x̄. Since βG(xi) approaches

βG(x̄) when xi approaches x̄, this contradiction also applies to any xi sufficiently close

to x̄. Therefore, it is impossible for the equilibrium βG(xi) characterized by Lemma 2 to

be strictly increasing under every CTR profile. Since βG(xi) is the unique equilibrium

bidding strategy, there exists no monotonic equilibrium in the one-dimensional GSP

auction with two positions under some CTR profile. Given the result of Lemma 1, this

implies that there exists some number of positions K with some CTR profile such that

no efficient equilibrium exists in the one-dimensional GSP auction.

Proof of Proposition 2:

Proof. Define γ(xi;α1, α2) as the weighting factor in the equilibrium bidding function

βV (xi) characterized in Lemma 3:

γ(xi;α1, α2) =
g1(xi|xi)(α1 − α2)

g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

(61)

then the equilibrium bidding strategy characterized in Lemma 3 can be rewritten as

βV (xi) = γ(xi;α1, α2)v1(xi, xi) +
(

1− γ(xi;α1, α2)
)
v2(xi, xi) (62)
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Take derivative of β(xi) = γ(xi)v
1(xi, xi) + (1− γ(xi))v

2(xi, xi) with respect to xi:

dβV (xi)

dxi
= γ(xi)

[∂v1(xi, xi)

∂xi

]
+ (1− γ(xi))

[∂v2(xi, xi)

∂xi

]
︸ ︷︷ ︸

bid-increasing incentive from higher expected values

+
∂γ(xi)

∂xi

[
v1(xi, xi)− v2(xi, xi)

]
︸ ︷︷ ︸

bid-shading incentive from the “winner’s curse”

(63)

The first two terms in equation (63) capture the positive effect of greater expected

values on βV (xi) when xi increases. As xi increases, the expected values conditional on

winning both position 1 and position 2 increase, which causes equilibrium bid βV (xi) to

increase. The last term captures the negative effect of the “winner’s curse” on βV (xi).

As xi increases, bidder i is more likely to win the first position at any monotonic

equilibrium, which amplifies the “winner’s curse.” When the negative effect from the

“winner’s curse” dominates the positive effect from increased expected values, the sign

of dβV (xi)
dxi

can be negative.

Note that given any CTR profile (α1, α2), for any xi ∈ [0, x̄], the magnitude of

the “winner’s curse,” v1(xi, xi) − v2(xi, xi), is multiplied by ∂γ(xi)
∂xi

. The later can be

expressed as

∂γ(xi;α1, α2)

∂xi
=

(α1 − α2)α2

[
∂g1(xi|xi)

∂xi
g2(xi|xi)− g1(xi|xi)∂g2(xi|xi)

∂xi

]
[
g1(xi|xi)(α1 − α2) + g2(xi|xi)α2

]2 > 0 (64)

For any CTR profile (α1, α2) satisfying 0 < α2 < α1, take limit of ∂γ(xi;α1,α2)
∂xi

when

xi approaches x̄ yields

lim
xi→x̄

∂γ(xi;α1, α2)

∂xi
= −

( α2

α1 − α2

)
× 1

g1(x̄|x̄)
× ∂g2(x̄|x̄)

∂xi
(65)

When α2 is sufficiently close to α1, the denominator becomes sufficiently close to

0 so that limxi→x̄
∂γ(xi;α1,α2)

∂xi
approaches infinity. As long as v1(xi, xi) < v2(xi, xi), the

negative impact from “winner’s curse” will be dominant when xi is sufficiently close to
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x̄ and α2 is sufficiently close to α1. Therefore, under any non-trivially interdependent

values, when there areK = 2 positions, there always exists some CTR profile (α1, α2) in

which α2 is strictly lower than but sufficiently close to α1 s.t. the equilibrium bid βV (xi)

is decreasing in xi for values of xi close to the upper boundary x̄. This demonstrates

that there always exists some number of positions K with some CTR profile such that

no efficient equilibrium exists in the one-dimensional VCG auction.

Proof of Lemma 4:

Proof. It is straightforward to see that if every bidder adopts a symmetric and strictly

increasing bidding strategy for every position k in equilibrium of a K-dimensional

assortative position auction, then the equilibrium allocation is always efficient. Let

β(x) =
(
β1(x), · · · , βK(x)

)
be the symmetric equilibrium bidding strategy. Since βk(x)

is strictly increasing for every k, the bidder with the highest signal will submit the

highest bid for position 1 and win position 1. The bidder with the second highest

signal will submit the highest bid among the rest of bidders and win position 2, etc.

The equilibrium allocation will rank bidders according to their signals and therefore is

efficient.

I will next show that an equilibrium of a K-dimensional assortative position auction

is efficient only if every bidder uses a symmetric and strictly increasing bidding strategy

βk(x) for any position k. Suppose an efficient equilibrium exists in a K-dimensional

assortative auction, then a bidder who receives a signal xi must be placed above a

bidder who receives a lower signal xj < xi if both bidders receive some position in

equilibrium. Pick an arbitrary bidder i, for any position k ∈ [1, K], take any value

x
′
i > xi, then there is positive probability that there are exactly (k − 1) bidders who

receive signals above x
′
i and one bidder j 6= i who receives signal xj ∈ (xi, x

′
i). Efficiency

requires that bidder i wins position k if bidder i receives signal x
′
i, and bidder j wins

position k if bidder i receives signal xi. With the K-dimensional assortative ranking

rule, bidder i’s bid for position k must always be higher than bidder j’s bid for position

k when receiving x
′
i, and bidder i’s bid for position k must always be lower than bidder
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j’s bid for position k when receiving xi:

βik(x
′

i) > βjk(xj)

βik(xi) < βjk(xj)
(66)

This is only possible when βik(x
′
i) > βik(xi). Therefore, for every bidder i and every

position k, we must have

x
′

i > xi → βik(x
′

i) > βik(xi) (67)

which means βik(xi) is strictly increasing in xi for every i and every k.

Next, I will show that any efficient equilibrium in a K-dimensional assortative

position auction must be symmetric across bidders. Suppose the equilibrium is not

symmetric, i.e., there exists some k ∈ [1, K] and i 6= j s.t. βik(x̂) 6= βjk(x̂) for some

x̂ ∈ [0, x̄]. Without loss of generality, assume βik(x̂) > βjk(x̂). Since βik(.) and βjk(.)

are continuous, there exists xi, xj s.t. xi < x̂ < xj, and βik(xi) > βjk(xj). There is

positive probability that there are exactly (k − 1) bidders other than i and j receive

signals above xj. Since xi < x̂ < xj, efficiency requires that bidder j wins position k.

However, with the K-dimensional assortative ranking rule, βik(xi) > βjk(xj) implies

that bidder j cannot win position k, which yields a contradiction. Therefore, it is

impossible to have βik(x̂) 6= βjk(x̂) for any i, j, any k ∈ [1, K], and any value of

x̂. In any efficient equilibrium, each bidder must use a symmetric bidding strategy

βik(.) = βk(.) for every position k.

Proof of Proposition 3:

Proof. For any arbitrary bidder i, let g
{k}
i (yk, · · · , y1|xi) be the joint density of (Yk, Yk−1, · · · , Y1)

conditional on X = xi, according to the joint distribution of signals F (x1, · · · , xN).

Define v{k}(xi; y1, y2, · · · , yk) as bidder i’s expected value per click conditional on her

own signal X equals to xi, the highest signal Y1, the second highest signal Y2, ..., the
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k-th highest signal Yk received by her opponents equals to (y1, y2, · · · , yk):

v{k}(xi; y1, y2, · · · , yk) = E
[
vi
∣∣X = xi, Y1 = y1, Y2 = y2, · · · , Yk = yk

]
(68)

Suppose all of bidder i’s opposing bidders follow the monotonic Bayesian equi-

librium bidding strategy β(.) = (β1(.), β2(.), · · · , βK(.)) in the K-dimensional GSP

auction. Let β−1
k (.) denote the inverse function of βk(.). Then bidder i’s best response

bid (b1∗
i , b

2∗
i , · · · , bK∗i ) maximizes

∫ β−1
1 (b1i )

0

α1

[
v{1}(xi, y1)− β(y1)

]
g
{1}
i (y1|xi)dy1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

α2

[
v{2}(xi, y1, y2)− β(y2)

]
g
{2}
i (y2, y1|xi)dy2dy1

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

α3

[
v{3}(xi, y1, y2, y3)− β(y3)

]
g
{3}
i (y3, y2, y1|xi)dy3dy2dy1

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

αK

[
v{K}(xi, y1, · · · , yK)− β(yK)

]
g
{K}
i (yK , · · · , y1|xi)dyK · · · dy1

(69)

Define ΠG
k

(
xi, y1, · · · , yk

)
as

ΠG
k

(
xi, y1, · · · , yk

)
= αk

[
v{k}(xi, y1, · · · , yk)− β(yk)

]
× g{k}i (yk, · · · , y1|xi) (70)
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Then the objective function (69) can be rewritten as

Π(bi|xi) =

∫ β−1
1 (b1i )

0

ΠG
1

(
xi, y1

)
dy1︸ ︷︷ ︸

A1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

ΠG
2

(
xi, y1, y2

)
dy2dy1︸ ︷︷ ︸

A2

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

ΠG
3

(
xi, y1, · · · , y3

)
dy3dy2dy1︸ ︷︷ ︸

A3

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

ΠG
K

(
xi, y1, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

AK

(71)

Let Ak denote the k-th term in the objective function (71). The definitions of A1,

A2 and A3 are shown in the objective function (71). For any k ≥ 3, Ak is given by

Ak =

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )︸ ︷︷ ︸
(k−1)

∫ β−1
k (bki )

0

ΠG
k

(
xi, y1, · · · , yk

)
dyk · · · dy2dy1

(72)

The first order condition with respect to b1
i , b

2
i , · · · , bKi is given by

∂A1

∂b1
i

+
∂A2

∂b1
i

+
∂A3

∂b1
i

+ · · ·+ ∂AK
∂b1

i

= 0

∂A2

∂b2
i

+
∂A3

∂b2
i

+ · · ·+ ∂AK
∂b2

i

= 0

· · ·
∂AK−1

∂bK−1
i

+
∂AK

∂bK−1
i

= 0

∂AK
∂bKi

= 0

(73)

Since each bki enters Ak, Ak+1, · · · , AK , but does not enter any Ak′ with k′ < k.
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For any 1 ≤ k ≤ K, take derivative of Ak with respect to bki and replacing bn∗i by

βn(xi) for all n ∈ {1, 2, · · · , K} yields

∂Ak
∂bki

=
1

β
′
k(β

−1
k (bki ))

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

ΠG
k

(
xi, y1, · · · , yk−1, β

−1
k (bki )

)
dyk−1 · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

ΠG
k

(
xi, y1, · · · , yk−1, xi

)
dyk−1 · · · dy1

=
gk(xi|xi)
β
′
k(xi)

αk

[
vk(xi, xi)− bki

]
(74)

Take derivative of Ak+1 with respect to bki , and replace bni by βn(xi) for all n ∈
{1, 2, · · · , K} yields

∂Ak+1

∂bki
=− 1

β
′
k(β
−1
k (bki ))

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k+1(bk+1

i )

0
ΠG
k+1

(
xi, y1, · · · , β−1

k (bki ), yk+1

)
dyk+1dyk−1 · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
ΠG
k+1

(
xi, y1, · · · , xi, yk+1

)
dyk+1dyk−1 · · · dy1

=− gk(xi|xi)
β
′
k(xi)

αk

[
vk(xi, xi)−

∫ xi

0
βk+1(yk+1)dGk+1

(
yk+1

∣∣xi, xi)]
(75)

Take derivative of Ak+2 with respect to bki , and replace bni by βn(xi) for all n ∈
{1, 2, · · · , K} yields

∂Ak+2

∂bki
=

1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

β−1
k+1(bk+1

i )

∫ β−1
k+2(bk+2

i )

0
ΠG
k+2

(
xi, y1, · · · , β−1

k (bki ), yk+1, yk+2

)
dyk+2dyk+1dyk−1 · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

xi

∫ xi

0
ΠG
k+2

(
xi, y1, · · · , xi, yk+1, yk+2

)
dyk+2dyk+1dyk−1 · · · dy1

=0

(76)

This is because the integral of any continuous function on [xi, xi] is zero. For any An

with n ≥ k + 2, ∂An

∂bki
also contains an integral on [xi, xi]. Therefore,

∂An
∂bki

= 0, ∀n 6= k, k + 1 (77)
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Therefore, the K first order conditions of the objective function characterized in (73)

can be simplified to

∂Ak
∂bki

+
∂Ak+1

∂bki
= 0, ∀k ∈ {1, 2, · · · , K − 1}

∂AK
∂bKi

= 0

(78)

For the last position K, the equilibrium bid bK∗i = βK(xi) is defined by ∂AK

∂bKi
= 0,

i.e.,
gK(xi|xi)
β
′
K(xi)

αK
[
vK(xi, xi)− βK(xi)

]
= 0 (79)

so the Bayesian equilibrium bidding strategy for the last positionK in the K-dimensional

GSP auction is

βK(xi) = vK(xi, xi) (80)

For any position k ∈ {1, 2, · · · , K − 1}, the equilibrium bid bk∗i = βk(xi) is charac-

terized by ∂Ak

∂bki
+ ∂Ak+1

∂bki
= 0, i.e.,

gk(xi|xi)
β
′
k(xi)

[
αk
[
vk(xi, xi)−βk(xi)

]
−αk+1

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk|xi, xi

)]]
= 0

(81)

Rearranging equation (81) gives the equilibrium bidding strategy βk(xi) for any posi-

tion above K in the K-dimensional GSP auction:

βk(xi) = vk(xi, xi)−
αk+1

αk

[
vk(xi, xi)−

∫ xi

0

βk+1(yk+1)dGk+1|k
(
yk|xi, xi

)]
, ∀k ∈ [1, K − 1]

(82)

Proof of Proposition 4:

Proof. Suppose all of bidder i’s opposing bidders follow a monotonic Bayesian equi-

librium bidding strategy β(x) =
(
β1(.), β2(.), · · · , βK(.)

)
in the K-dimensional VCG
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auction. Let β−1
k (.) denote the inverse function of βk(.). Let g

{K}
i (yK , · · · , y1|xi) be the

joint density of (YK , YK−1, · · · , Y1) conditional on X = xi. Let v{K}(xi; y1, y2, · · · , yK)

be bidder i’s expected value per click conditional on her own signal X equals to xi, the

highest signal Y1, the second highest signal Y2, ... the K-th highest signal YK received

by her opponents equal to (y1, y2, · · · , yK). Define ΠV
k

(
xi, y1, · · · , yK

)
as

ΠV
k

(
xi, y1, · · · , yK

)
=
[
αkv

{K}(xi, y1, · · · , yK)−
K∑
j=k

(αj − αj+1)βj(yj)
]
× g{K}i (yK , · · · , y1|xi)

(83)

Then bidder i’s best response bid (b1∗
i , b

2∗
i , · · · , bK∗i ) maximizes

Π(bi|xi) =

∫ β−1
1 (b1i )

0

∫ y1

0

∫ y2

0

· · ·
∫ yK−1

0

ΠV
1

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B1

+

∫ 1

β−1
1 (b1i )

∫ β−1
2 (b2i )

0

∫ y2

0

· · ·
∫ yK−1

0

ΠV
2

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B2

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ β−1
3 (b3i )

0

· · ·
∫ yK−1

0

ΠV
3

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

B3

+ · · ·

+

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

∫ y2

β−1
3 (b3i )

· · ·
∫ β−1

K (bKi )

0

ΠV
K

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1︸ ︷︷ ︸

BK

(84)

Let Bk denote the k-th term in equation (84). B1, B2 and B3 are given in equation

(84). For all k ≥ 3, each Bk can be expressed as

Bk =

∫ 1

β−1
1 (b1i )

∫ y1

β−1
2 (b2i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )︸ ︷︷ ︸
(k−1)

∫ β−1
k (bki )

0

∫ yk

0

· · ·
∫ yK−1

0︸ ︷︷ ︸
(K−k)

ΠV
k

(
xi, y1, y2, · · · , yK

)
dyK · · · dy1

(85)

Since each bki only enters Bk, Bk+1, · · · , BK , but not enter any Bk′ with k′ < k, the

first order condition of the objective function (84) with respect to (b1
i , b

2
i , · · · , bKi ) is
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given by
∂B1

∂b1
i

+
∂B2

∂b1
i

+
∂B3

∂b1
i

+ · · ·+ ∂BK

∂b1
i

= 0

∂B2

∂b2
i

+
∂B3

∂b2
i

+ · · ·+ ∂BK

∂b2
i

= 0

· · ·
∂BK−1

∂bK−1
i

+
∂BK

∂bK−1
i

= 0

∂BK

∂bKi
= 0

(86)

Take derivative of Bk with respect to bki , and replace bni by βn(xi) for all n ∈
{1, 2, · · · , K} yields

dBk

dbki
=

1

β
′
k(β
−1
k (bki ))

×∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

0
· · ·
∫ yK−1

0
ΠV
k

(
xi, y1, · · · , yk−1, β

−1
k (bki ), yk+1, · · · , yK

)
dyK · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

(87)

Take derivative of Bk+1 with respect to bki , and replacing bni by βn(xi) for all n ∈
{1, 2, · · · , K} yields

dBk+1

dbki
=− 1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k+1(bk+1

i )

0
· · ·
∫ yK−1

0
ΠV
k+1

(
xi, y1, · · · , yk−1, β

−1
k (bki ), yk+1, · · · , yK

)
dyK · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k+1

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

(88)

Take derivative of Bk+2 with respect to bki , and replace bni by βn(xi) for all n ∈
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{1, 2, · · · , K} yields

dBk+2

dbki
=− 1

β
′
k(β
−1
k (bki ))

×

∫ 1

β−1
1 (b1i )

· · ·
∫ yk−2

β−1
k−1(bk−1

i )

∫ β−1
k (bki )

β−1
k+1(bk+1

i )

∫ β−1
k+2(bk+2

i )

0
· · ·
∫ yK−1

0
ΠV
k+2

(
xi, y1, · · · , β−1

k (bki ), · · · , yK
)
dyK · · · dy1

=− 1

β
′
k(xi)

∫ 1

xi

· · ·
∫ yk−2

xi

∫ xi

xi

∫ xi

0
· · ·
∫ yK−1

0
ΠV
k+2

(
xi, y1, · · · , yk−1, xi, yk+1, · · · , yK

)
dyK · · · dy1

=0

(89)

since the integral of any continuous function on [xi, xi] is zero. At the equilibrium

where bi = β(xi),
dBn

dbki
contains an integral on [xi, xi] for any Bn with n ≥ k + 2, so

dBn

dbki
= 0 for all n 6= k, k + 1. Therefore, the first order conditions characterized in

equation (86) becomes

dBk

dbki
+
dBk+1

dbki
= 0, ∀k ∈ [1, K − 1]

dBK

dbKi
= 0

(90)

For the last position K, the equilibrium bid bK∗i = βK(xi) is characterized by

dBK

dbKi
= 0:

1

β
′
K(xi)

∫ 1

xi

· · ·
∫ yK−2

xi

∫ xi

0
ΠV
K

(
xi, y1, · · · , yk−1, xi

)
dyK−1 · · · dy1

=
1

β
′
K(xi)

∫ 1

xi

· · ·
∫ yK−2

xi

∫ xi

0
αK

[
v{K}(xi, y1, · · · , yK−1, xi)− βK(xi)

]
g
{K}
i (xi, yK−1, · · · , y1|xi)dyK · · · dy1

=
gK(xi|xi)
β
′
K(xi)

αK

[
vK(xi, xi)− βK(xi)

]
=0

(91)

so the equilibrium bidding strategy for the last position K in the K-dimensional VCG

auction is given by

βK(xi) = vK(xi, xi) (92)

For any position 1 ≤ k ≤ K − 1, the equilibrium bid bk∗i = βk(xi) is characterized
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by dBk

dbki
+ dBk+1

dbki
= 0:

1

β
′
k(xi)

∫ 1

xi

· · ·
∫ xi

0
· · ·
∫ yK−1

0

[
ΠV
k

(
xi, y1, · · · , xi, · · · , yK

)
−ΠV

k+1

(
xi, y1, · · · , xi, · · · , yK

)]
dyK · · · dy1

=
1

β
′
k(xi)

∫ 1

xi

· · ·
∫ xi

0
· · ·
∫ yK−1

0
(αk − αk+1)

[
v{K}(xi, y1, · · · , xi, · · · , yK)− βk(xi)

]
dyK · · · dy1

=
gk(xi|xi)
β
′
k(xi)

(αk − αk+1)
[
vk(xi, xi)− βk(xi)

]
=0

(93)

Therefore, for any position above the last position K, the equilibrium bidding strategy

βk(xi) in the K-dimensional VCG auction is given by

βk(xi) = vk(xi, xi), ∀k ∈ {1, 2, · · · , K − 1} (94)

Proof of Proposition 5:

Proof. First consider the case when no bidder has dropped out. When there are more

than K bidders remaining in the auction, each bidder will not drop out until the

expected payoff from the last position K falls below zero. Suppose all the opposing

bidders adopt strategy b∗N defined in proposition 5, b∗N(xi) = v(K)(xi, xi, · · · , xi). When

all bidders are in the auction, at any price p, bidder i wins the last position K by

dropping out right now only if there are (N −K) bidders drop out simultaneously at

this price, i.e., the lowest (N −K) value bidders have the same signal YK = YK+1 =

· · · = YN−1 = yK . Therefore, given that all opponents follow strategy b∗N(x), bidder i’s

expected value conditional on winning K is

αKv
(K)
(
xi, yK , · · · , yK

)
= αKE[vi|X = xi, YK = yK , YK+1 = yK , · · · , YN−1 = yK ]

(95)
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Bidder i’s expected payment conditional on winning K is

αKv
(K)
(
yK , yK , · · · , yK

)
= αKE[vi|X = yK , YK = yK , YK+1 = yK , · · · , YN−1 = yK ]

(96)

The expected payoff from the last position K is non-negative for bidder i if and only

if xi ≥ yK . By using strategy b∗N , bidder i will win position K or some position above

K if and only if xi ≥ yK , so b∗N is the best response bidding strategy for each bidder i

when all bidders are sill in the auction, assuming all other bidders also adopt strategy

b∗N . This is an ex-post equilibrium, since b∗N is bidder i’s optimal strategy for any

realization of opposing bidders’ signals x−i.

Next, consider the case when (N − n) bidders have dropped out, but n ≥ K + 1

bidders are still in the auction so that the allocation of no position has been determined.

Similar to the case with N active bidders, each bidder will not drop out until the

expected payoff from the last position K falls below zero. However, the expected payoff

from the last position is now calculated conditional on the revealed signals of the (N−n)

drop-out bidders, Yn = yn, · · · , YN−1 = yN−1, in which yn, yn+1, · · · , yN−2, yN−1 are

inferred from b∗N(yN−1) = pN , b∗N−1(yN−2|pN) = pN−1, b∗n+1(yn|pN , · · · , pn+2) = pn+1.

Assume all the remaining opposing bidders adopt strategy b∗n. At any price p, bidder

i will win the position K by dropping out at the current price only if the lowest-value

(n−K) bidders among the active bidders drop out simultaneously, i.e., they have the

same signal YK = · · · = Yn−1 = yK . Bidder i’s expected value upon winning K is

αKv
(K)
(
xi, yK , · · · , yK︸ ︷︷ ︸

(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)
= αKE

[
vi
∣∣X = xi, YK = yK , YK+1 = yK , · · · , Yn−1 = yK , Yn = yn, · · · , YN−1 = yN−1

]
(97)

Her payment upon winning K is

αKv
(K)
(
yK , yK , · · · , yK︸ ︷︷ ︸

(n−K)

, yn, yn+1, · · · , yN−1︸ ︷︷ ︸
(N − n) lowest signals

)
= αKE

[
vi
∣∣X = yK , YK = yK , YK+1 = yK , · · · , Yn−1 = yK , Yn = yn, · · · , YN−1 = yN−1

]
(98)
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Therefore, it is profitable to stay in the auction if and only if xi ≥ yK . By using bidding

strategy b∗n, bidder i will win a position no lower than K if and only if xi ≥ yK , so

b∗n is the best response bidding strategy for each bidder i when there are K < n < N

bidders in the auction. This is an ex-post equilibrium, since b∗n is the best response

given any realization of other bidders’ signals.

Next, consider the case when n ≤ K bidders are left in the auction. When there are

n ≤ K bidders left in the auction, all the remaining bidders will win some position, so

the drop-out price of each bidder i only affect which position she gets. In equilibrium, a

bidder with signal xi should be indifferent between getting the current lowest position

n at price pn+1 and the next best position (n− 1) at a higher price. Note that bidder i

wins position (n−1) at a higher price b only if the lowest-value remaining bidder drops

out at b. Assuming that all remaining opposing bidders adopt strategy b∗n, bidder i’s

expected payoff from winning the next best position (n− 1) given the revealed signals

(yn−1, · · · , yN) is

EΠn−1 =αn−1

[
v(n−1)

(
xi, yn−1, yn, · · · , yN

)
− b
]

=αn−1

[
v(n−1)

(
xi, yn−1, yn, · · · , yN

)
− v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)]
+ αn

[
v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)
− pn+1

] (99)

since

b = v(n−1)
(
yn−1, yn−1, yn, · · · , yN

)
− αn
αn−1

[
v(n−1)

(
yn−1, yn−1, yn, · · · , yN

)
−pn+1

]
(100)

Bidder i’s expected payoff from winning the current lowest position n, given (Yn−1, · · · , YN)

is

EΠn = αn

[
v(n−1)(xi, yn−1, yn · · · , yN)− pn+1

]
(101)

Subtracting equation (101) from equation (99), the expected payoff from staying in the

auction and getting position (n− 1) is higher than the expected payoff from dropping
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out right now and getting position n if and only if

EΠn−1 − EΠn = (αn−1 − αn)
[
v(n−1)(xi, yn−1, yn · · · , yN)− v(n−1)(yn−1, yn−1, yn · · · , yN)

]
≥ 0

(102)

Inequality (102) holds if and only if xi ≥ yn−1. Therefore, by using bidding strategy

b∗n, bidder i wins a position no lower than (n − 1) if and only if xi ≥ yn−1, so b∗n is

the best response bidding strategy for bidder i when there are n < K bidders remain

in the auction. This is an ex-post equilibrium at the time when n bidders are left

in the auction, since b∗n is bidder i’s optimal strategy for any realization of the other

bidders signals x−i. Therefore, (b∗, · · · , b∗) characterized in Proposition 5 is an ex-post

equilibrium in the Generalized English Auction with interdependent values.

Proof of Proposition 6::

Proof. I first compare expected revenues of the K-dimensional GSP auction and the K-

dimensional VCG auction, and then compare expected revenues of the K-dimensional

VCG auction and the GEA.

Let βV (xi) =
(
βV1 (xi), β

V
2 (xi), · · · , βVK(xi)

)
and βG(xi) =

(
βG1 (xi), β

G
2 (xi), · · · , βGK(xi)

)
denote the Bayesian equilibrium bidding strategies in the K-dimensional VCG auction

and K-dimensional GSP auction, respectively. According to the characterization of

βV (xi) and βG(xi) in Propositions 3 and 4, the expected prices for the last position K

in the K-dimensional VCG auction and the K-dimensional GSP auction are as follows:

E
[
pV,(K)

]
= αKE

[
βVK(YK)

∣∣∣{YK−1 > X > YK}
]

= αKE
[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

E
[
pG,(K)

]
= αKE

[
βGK(YK)

∣∣∣{YK−1 > X > YK}
]

= αKE
[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

(103)

For any position 1 ≤ k ≤ K − 1, the expected price E
[
pV,(k)

]
in the K-dimensional

VCG auction and the expected price E
[
pG,(k)

]
in the K-dimensional GSP auction are
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given below:

E
[
pV,(k)

]
= (αk − αk+1)E

[
βVk (Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pV,(k+1)

]
= (αk − αk+1)E

[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pV,(k+1)

]
E
[
pG,(k)

]
= αkE

[
βGk (Yk)

∣∣∣{Yk−1 > X > Yk}
]

= αkE
[
vk(Yk, Yk)−

[αk+1

αk
vk(Yk, Yk)− E

[
βGk+1(Yk+1)

]]∣∣∣{Yk−1 > X > Yk}
]

= (αk − αk+1)E
[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

+ E
[
pG,(k+1)

]
(104)

Equation (103) and (104) imply that

E
[
pV,(k)

]
− E

[
pV,(k+1)

]
= E

[
pG,(k)

]
− E

[
pG,(k+1)

]
, ∀k ∈ {1, 2, · · · , K − 1}

E
[
pV,(K)

]
= E

[
pG,(K)

] (105)

which means the expected prices for the last position K are the same, and the expected

difference in prices between any two adjacent positions are the same. Therefore,

E
[
pV,(k)

]
= E

[
pG,(k)

]
, ∀k ∈ {1, 2, · · · , K} (106)

which directly implies that the K-dimensional VCG auction and the K-dimensional

GSP auction are revenue equivalent.

Alternatively, the revenue equivalence between the K-dimensional VCG auction and

the K-dimensional GSP auction can be proved by showing that the expected payments

of each bidder are the same in two auctions. First consider the case of K = 2 positions.

The expected payments by a bidder with signal xi in the K-dimensional VCG auction
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and the K-dimensional GSP auction are given by

mV (xi) =Pr(xi ≥ Y1)E
[
(α1 − α2) v1(Y1, Y1)︸ ︷︷ ︸

βV
1 (Y1)

+α2 v
2(Y2, Y2)︸ ︷︷ ︸
βV
2 (Y2)

∣∣∣xi ≥ Y1

]
+ Pr(Y2 ≤ xi < Y1)E

[
α2 v

2(Y2, Y2)︸ ︷︷ ︸
βV
2 (Y2)

∣∣∣Y2 ≤ xi < Y1

]
mG(xi) =Pr(xi ≥ Y1)E

[
α1

[
v1(Y1, Y1)− α2

α1

v1(Y1, Y1) +
α2

α1

E[v2(Y2, Y2)|Y1]
]

︸ ︷︷ ︸
βG
1 (Y1)

∣∣∣xi ≥ Y1

]

+ Pr(Y2 ≤ xi < Y1)E
[
α2 v

2(Y2, Y2)︸ ︷︷ ︸
βG
2 (Y2)

∣∣∣Y2 ≤ xi < Y1

]
(107)

The only difference between mV (xi) and mG(xi) comes from the term E[v2(Y2, Y2)|Y1 ≤

xi] in mV (xi) and E
[
E[v2(Y2, Y2)|Y1]

∣∣∣Y1 ≤ xi

]
in mG(xi). According to the Law of

Iterated Expectation,

E
[
E[v2(Y2, Y2)|Y1]

∣∣∣Y1 ≤ xi

]
= E

[
v2(Y2, Y2)

∣∣∣Y1 ≤ xi

]
(108)

which implies mV (xi) = mG(xi). Similar argument applies for any K ≥ 2 positions.

Since the expected payments of a bidder with the same signal xi are the same in two

auctions, the K-dimensional GSP auction and the K-dimensional VCG auction are

always revenue equivalent.

I next compare expected revenue of the GEA and the K-dimensional VCG auction.

The expected prices for the last position K in GEA and K-dimensional VCG auction

are as follows:

E
[
pE,(K)

]
= αKE

[
v(K)(YK , YK ;YK+1, YK+2, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

E
[
pV,(K)

]
= αKE

[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
] (109)

According to Milgrom and Weber (1982)’s Linkage Principle, E[pE,(K)] ≥ E[pV,(K)]. A
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formal proof is given below:

vK(xi, yK) = E
[
vi

∣∣∣X = xi, YK = yK

]
= E

[
E
[
vi
∣∣X, YK , YK+1, · · · , YN−1

]∣∣∣X = xi, YK = yK

]
= E

[
v(K)(X, YK ;YK+1, · · · , YN−1)

∣∣∣X = xi, YK = yK

] (110)

For xi > yK , we have

vK(yK , yK) = E
[
v(K)(X, YK ;YK+1, · · · , YN−1)

∣∣∣X = yK , YK = yK

]
= E

[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣X = yK , YK = yK

]
≤ E

[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣X = xi, YK = yK

] (111)

Therefore,

E
[
pV,(K)

]
= αKE

[
vK(YK , YK)

∣∣∣{YK−1 > X > YK}
]

≤ αKE
[
E
[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣X, YK]∣∣∣{YK−1 > X > YK}
]

= αKE
[
v(K)(YK , YK ;YK+1, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

= E
[
pE,(K)

]
(112)

so the expected price for the last position K is weakly higher in the GEA than in the

K-dimensional VCG auction.

For any position k < K, the increment in expected price between position k and

position k + 1 in GEA and K-dimensional VCG auction are as follows:

E
[
pE,(k) − pE,(k+1)

]
= (αk − αk+1)E

[
v(k)(Yk, Yk;Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

E
[
pV,(k) − pV,(k+1)

]
= (αk − αk+1)E

[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]

(113)

Applying the Linkage Principle again, we have

E
[
vk(Yk, Yk)

∣∣∣{Yk−1 > X > Yk}
]
≤ E

[
v(k)(Yk, Yk;Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

(114)
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so the increment in expected price between any two adjacent positions is weakly higher

in the GEA than in the K-dimensional VCG:

E
[
pE,(k)

]
− E

[
pE,(k+1)

]
≥ E

[
pV,(k)

]
− E

[
pV,(k+1)

]
, ∀k ∈ {1, 2, · · · , K − 1} (115)

Since the expected price for the last position is weakly higher in GEA, and the

increment in expected price between any two positions above the last position is also

weakly higher in GEA, the expected price for every position is weakly higher in the

GEA than in the K-dimensional VCG auction. Therefore, expected revenue in the

GEA is weakly higher than expected revenue in the K-dimensional VCG auction.

Proof of Proposition 715:

Proof. The proof of Proposition 7 is based on two lemmas. Lemma 5 provides a

characterization of ex-post IC and IR mechanism under affiliated signals. Lemma 6

characterizes the ex-ante expected revenue in any ex-post IC and IR mechanism.

Lemma 5. For any value function vi(xi, x−i) satisfying assumptions A1-A3 and signal

distribution F (x) satisfying assumptions A4-A5, a mechanism (q, p) is ex-post IC and

IR if and only if for all bidder i, for any signal profile (xi, x−i), qi(xi, x−i) is weakly

increasing in xi, and the ex-post utility ui(xi, x−i) satisfies

ui(xi, x−i) = ui(0, x−i) +

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)ds, ∀ x−i (116)

ui(0, x−i) ≥ 0, ∀ x−i (117)

Proof. I first show that any ex-post IC and IR mechanism satisfies the characterization

in Lemma 5, then show that any mechanism satisfying the conditions in Lemma 5 must

be ex-post IC and IR.

15The proof of Proposition 7 follows from Myerson (1981)[32], Ulku (2013)[37] and Li (2017)[27].
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Suppose (q, p) is an ex-post IC and IR mechanism. According to the definition of

ex-post IC, for all bidder i, for any true signal profile (xi, x−i) and bidder i’s reported

signal x
′
i,

ui(xi, x−i) ≥ qi(x
′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)

= ui(x
′

i, x−i) + qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
] (118)

which implies

ui(xi, x−i) ≥ ui(x
′

i, x−i) + qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]

ui(x
′

i, x−i) ≥ ui(xi, x−i) + qi(xi, x−i)
[
vi(x

′

i, x−i)− vi(xi, x−i)
] (119)

which can be rewritten as

qi(x
′

i, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]
≤ ui(xi, x−i)− ui(x

′

i, x−i)

qi(xi, x−i)
[
vi(xi, x−i)− vi(x

′

i, x−i)
]
≥ ui(xi, x−i)− ui(x

′

i, x−i)
(120)

Inequality (120) implies that qi(xi, x−i) is weakly increasing in xi, and ui(xi, x−i)

has partial derivative

∂ui(xi, x−i)

∂xi
= qi(xi, x−i)

∂vi(xi, x−i)

∂xi
(121)

integrate both sides, get

ui(xi, x−i) =

∫ xi

0

[
qi(s, x−i)

∂vi(s, x−i)

∂s

]
ds+ ui(0, x−i) (122)

Ex-post IR implies ui(xi, x−i) ≥ 0 for all i. Since qi(xi, x−i) is weakly increasing in

xi and vi(xi, x−i) is strictly increasing in xi, equation (122) implies that ui(0, x−i) ≤

ui(xi, x−i) for all xi, given any x−i, so ui(xi, x−i) ≥ 0 for all xi, given any x−i, only

if ui(0, x−i) ≥ 0 given any x−i. Therefore, any ex-post IC and IR mechanism must

satisfy equation (122), qi(xi, x−i) increasing in xi, and ui(0, x−i) ≥ 0.

I next show that any mechanism (q, p) that satisfies equation (122), qi(xi, x−i)
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increasing in xi, and ui(0, x−i) ≥ 0 for any x−i must be ex-post IC and IR.

Since qi(xi, x−i) is weakly increasing in xi,
∂vi(s,x−i)

∂s
> 0, and ui(xi, x−i) = ui(0, x−i)+∫ xi

0

[
∂vi(s,x−i)

∂s

]
qi(s, x−i)ds, it is trivial that ui(xi, x−i) ≥ ui(0, x−i) for all xi ≥ 0, given

any x−i, so ui(0, x−i) ≥ 0 for all x−i implies ex-post IR.

Suppose xi < x
′
i, then

ui(x
′

i, x−i) = ui(xi, x−i) +

∫ x
′
i

xi

[
qi(s, x−i)

∂vi(s, x−i)

∂s

]
ds

≥ ui(xi, x−i) +

∫ x
′
i

xi

[
qi(xi, x−i)

∂vi(s, x−i)

∂s

]
ds

= ui(xi, x−i) +
[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]

(123)

This directly implies ex-post IC.

The next lemma provides a characterization of the seller’s expected revenue in any

ex-post IC and IR mechanism.

Lemma 6. In any ex-post IC and IR mechanism, the ex-ante expected revenue is given

by

ER =

∫
x

∑
i

{
qi(xi, x−i)

{
vi(xi, x−i)−

1− Fi(xi|x−i)
fi(xi|x−i)

× ∂vi(xi, x−i)

∂xi

}}
f(x)dx

−
∫
x−i

∑
i

ui(0, x−i)f−i|0(x−i|0)dx−i

(124)

Proof. Following equation (122) in Lemma 5, the ex-ante expected payoff to bidder i
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in any ex-post IC and IR mechanism is given by

Ex
[
ui(xi, x−i)

]
=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf(x)dx

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsfi(xi|x−i)dxif−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

∫ x̄

s

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
fi(xi|x−i)dxidsf−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

(
1− Fi(s|x−i)

)
qi(s, x−i)

[∂vi(s, x−i)
∂s

]
dsf−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x−i

∫ x̄

0

(
1− Fi(xi|x−i)

)
qi(xi, x−i)

[∂vi(xi, x−i)
∂xi

]
dxif−i(x−i)dx−i

=

∫
x−i

ui(0, x−i)dF (x−i|0) +

∫
x

[1− Fi(xi|x−i)
fi(xi|x−i)

qi(xi, x−i)
∂vi(xi, x−i)

∂xi

]
f(x)dx

(125)

The ex-ante expected total surplus of the auction is given by

TS =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx (126)

The ex-ante expected revenue equals to the expected total surplus subtracted by

the expected total payoff to all bidders:

ER =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx

−
∑
i

{∫
x−i

ui(0, x−i)f(x−i|0)dx−i +

∫
x

{1− Fi(xi|x−i)
fi(xi|x−i)

q(xi, x−i)
∂vi(xi, x−i)

∂xi

}
f(x)dx

}
=
∑
i

∫
x

{
qi(xi, x−i)×

{
vi(xi, x−i)−

1− Fi(xi|x−i)
fi(xi|x−i)

∂vi(xi, x−i)

∂xi

}}
f(x)dx

−
∑
i

∫
x−i

ui(0, x−i)f(x−i|0)dx−i

(127)

According to the definition of marginal revenue MRi(xi, x−i), the seller’s problem
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is to maximize

ER =

∫
x

∑
i

{
qi(xi, x−i)MRi(xi, x−i)

}
f(x)dx−

∫
x−i

∑
i

ui(0, x−i)f−i|0(x−i|0)dx−i

(128)

subject to no reserve price, ui(0, x−i) ≥ 0 for any x−i, qi(xi, x−i) increasing in xi, and

the feasibility constraint. When MRi is strictly increasing in xi, the expected revenue

can be maximized by setting ui(0, x−i) = 0 for all x−i, and allocating higher CTR

to bidders with higher MRi. Therefore, under regularity condition R2, the optimal

allocation rule q∗ is given by

q∗i (xi, x−i) =

αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(129)

in which [X̂k(x−i), X̂
k−1(x−i)] is the interval of value that bidder i’s signal can take

such that bidder i has the k-th highest MRi(xi, x−i) given her opponents’ report x−i.

The ex-post IC and IR conditions given in Lemma 5 can be jointly written as

qi(xi, x−i)vi(xi, x−i)−
∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds− pi(xi, x−i) = ui(0, x−i) ≥ 0, ∀x−i

(130)

for all bidder i. Choose p∗i (xi, x−i) = q∗i (xi, x−i)vi(xi, x−i) −
∫ xi

0
q∗i (s, x−i)

∂vi(s,x−i)
∂s

ds,

then p∗i (xi, x−i) satisfies both constraint. Therefore, (q∗, p∗) is an optimal auction

subject to no reserve price among all ex-post IC and IR mechanisms.

Proof of Proposition 816:

Proof. To show that (q∗, p∗) characterized in Proposition 7 is optimal subject to no

reserve price among all Bayesian IC and IR mechanisms when bidders have independent

signals, I first characterize the optimal Bayesian mechanism subject to no reserve price

with independent signals, then show it is equivalent to (q∗, p∗). The proof is based on

16The proof of Proposition 8 follows from Myerson (1981)[32].
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two lemmas presented below:

Lemma 7. For any value function vi(xi, x−i) satisfying assumptions A1-A3, when

bidders’ signals are independently and identically distributed, a mechanism (q, p) is

Bayesian IC and IR if for every bidder i, for any report of signals x = (xi, x−i), the

expected CTR qi(xi, x−i) is weakly increasing in xi, and the interim expected utility

Ui(xi) satisfies

Ui(xi) = Ui(0) +

∫
x−i

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)dsf−i(x−i)dx−i (131)

Ui(0) ≥ 0 (132)

Proof. I first show that any Bayesian IC and IR mechanism can be characterized by

the conditions in Lemma 7, then finish the proof by showing that any mechanism

satisfying the characterization in Lemma 7 must be Bayesian IC and IR.

According to the definition of Bayesian IC mechanism, for all bidder i, for any

signal profile (xi, x−i) and bidder i’s reported signal x
′
i,

Ui(xi) ≥
∫
x−i

[
qi(x

′

i, x−i)vi(xi, x−i)− pi(x
′

i, x−i)
]
f−i(x−i)dx−i

= Ui(x
′

i) +

∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i

(133)

which implies

Ui(xi) ≥ Ui(x
′

i) +

∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i

Ui(x
′

i) ≥ Ui(xi) +

∫
x−i

[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]
f−i(x−i)dx−i

(134)

i.e., ∫
x−i

[
qi(x

′

i, x−i)
(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i ≤ Ui(xi)− Ui(x

′

i)∫
x−i

[
qi(xi, x−i)

(
vi(xi, x−i)− vi(x

′

i, x−i)
)]
f−i(x−i)dx−i ≥ Ui(xi)− Ui(x

′

i)

(135)
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Therefore, qi(xi, x−i) is weakly increasing in xi, and Ui(xi) has derivative

dUi(xi)

dxi
=

∫
x−i

qi(xi, x−i)
[∂vi(xi, x−i)

∂xi

]
f−i(x−i)dx−i (136)

integrate both sides yields

Ui(xi) =

∫
x−i

∫ xi

0

[∂vi(s, x−i)
∂s

]
qi(s, x−i)dsf−i(x−i)dx−i + Ui(0) (137)

Since qi(xi, x−i) is weakly increasing in xi and vi(xi, x−i) is strictly increasing in xi,

equation (137) implies that Ui(0) ≤ Ui(xi) for all xi. Therefore, Ui(xi) ≥ 0 for all

xi ∈ [0, x̄] only if Ui(0) ≥ 0.

I next show that any mechanism (q, p) that satisfies the characterization in Lemma

7 must be Bayesian IC and IR. Since qi(xi, x−i) is weakly increasing in xi,
∂vi(s,x−i)

∂s
>

0, and Ui(xi) = Ui(0) +
∫
x−i

∫ xi
0

[
∂vi(s,x−i)

∂s

]
qi(s, x−i)dsf−i(x−i)dx−i, it is trivial that

Ui(xi) ≥ Ui(0) for all xi, so Ui(0) ≥ 0 implies Bayesian IR.

Suppose xi < x
′
i, then

Ui(x
′

i) = Ui(xi) +

∫
x−i

∫ x
′
i

xi

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf−i(x−i)dx−i

≥ Ui(xi) +

∫
x−i

∫ x
′
i

xi

qi(xi, x−i)
[∂vi(s, x−i)

∂s

]
dsf−i(x−i)dx−i

= Ui(xi) +

∫
x−i

[
qi(xi, x−i)

(
vi(x

′

i, x−i)− vi(xi, x−i)
)]
f−i(x−i)dx−i

(138)

This directly implies Bayesian IC.

The result of Lemma 7 leads to the following lemma that gives an expression of the

seller’s expected revenue in any Bayesian IC and IR mechanism.

Lemma 8. For any Bayesian IC and IR mechanism that satisfy the conditions in
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Lemma 7, the ex-ante expected revenue is given by

ER =

∫
x

∑
i

{
qi(xi, x−i)

{
vi(xi, x−i)−

1− Fi(xi)
fi(xi)

∂vi(xi, x−i)

∂xi

}}
f(x)dx−

∑
i

Ui(0)

(139)

Proof. The ex-ante expected payoff to an bidder i in any Bayesian IC and IR auction

is

Exi [Ui(xi)] = Ui(0) +

∫
x

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsf(x)dx

= Ui(0) +

∫
x−i

∫ x̄

0

∫ xi

0

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
dsfi(xi)dxif−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

∫ x̄

s

qi(s, x−i)
[∂vi(s, x−i)

∂s

]
fi(xi)dxidsf−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

(
1− Fi(s)

)
qi(s, x−i)

[∂vi(s, x−i)
∂s

]
dsf−i(x−i)dx−i

= Ui(0) +

∫
x−i

∫ x̄

0

(
1− Fi(xi)

)
qi(xi, x−i)

[∂vi(xi, x−i)
∂xi

]
dxif−i(x−i)dx−i

= Ui(0) +

∫
x

[1− Fi(xi)
fi(xi)

qi(xi, x−i)
∂vi(xi, x−i)

∂xi

]
f(x)dx

(140)

The ex-ante expected total surplus of the auction is given by

TS =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx (141)

The ex-ante expected revenue equals to the expected total surplus subtracted by

the expected total payoff to all bidders:

ER =
∑
i

∫
x

vi(xi, x−i)qi(xi, x−i)f(x)dx

−
∑
i

{
Ui(0) +

∫
x

{1− Fi(xi)
fi(xi)

q(xi, x−i)
∂vi(xi, x−i)

∂xi

}
f(x)dx

}
=
∑
i

∫
x

{
qi(xi, x−i)×

{
vi(xi, x−i)−

1− Fi(xi)
fi(xi)

∂vi(xi, x−i)

∂xi

}}
f(x)dx−

∑
i

Ui(0)

(142)
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According to the definition of MRi(xi, x−i) with independent signals, the seller’s

problem is to maximize

ER =

∫
x

∑
i

{
qi(xi, x−i)×MRi(xi, x−i)

}
f(x)dx−

∑
i

Ui(0) (143)

subject to no reserve price, Ui(0) ≥ 0, qi(xi, x−i) being weakly increasing in xi, and the

feasibility constraint. Since Ui(0) is a constant, it is optimal to set Ui(0) = 0. The ex-

pected revenue is maximized by assigning higher qi to bidders with higher MRi(xi, x−i).

Under this allocation rule, the constraint that qi(xi, x−i) being weakly increasing in xi is

satisfied if MRi(xi, x−i) is strictly increasing in xi. Therefore, given that MRi(xi, x−i)

is strictly increasing in xi, the optimal allocation rule q(xi, x−i) is given by

q∗i (xi, x−i) =

αk if X̂k(x−i) ≤ xi < X̂k−1(x−i)

0 if xi < X̂K(x−i)

(144)

in which [X̂k(x−i), X̂
k−1(x−i)] is the interval of value that bidder i’s signal xi can take

such that bidder i has the k-th highest MRi(xi, x−i) given opponents’ report x−i.

The Bayesian IC and IR conditions given in Lemma 7 can be jointly written as

∫
x−i

{
qi(x)vi(x)−

∫ xi

0

qi(s, x−i)
∂vi(s, x−i)

∂s
ds−pi(x)

}
f−i(x−i)dx−i = Ui(0) ≥ 0 (145)

for all bidder i. Choose p∗i (x) = q∗i (x)vi(x)−
∫ xi

0
q∗i (s, x−i)

∂vi(s,x−i)
∂s

ds, then p∗i (x) satisfies

the joint constraint. Therefore, (q∗, p∗) is the optimal position auction subject to no

reserve price among all Bayesian IC and IR mechanisms when bidders have independent

signals.

Proof of Proposition 9:

Proof. Under regularity conditions R1-R3, it is trivial that given any profile of signals,
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the rank ordering of signals is equivalent to the rank ordering of values vi(xi, x−i) as

well as the rank ordering of marginal revenues MRi(xi, x−i), so for any bidder i, given

any opponents’ report x−i, we must have

x̂k(x−i) = X̂k(x−i), ∀k (146)

in which x̂k(x−i) is the minimum value that bidder i’s signal can take such that i

has the k-th highest value vi(xi, x−i) given x−i, and X̂k(x−i) is the minimum value

that bidder i’s signal can take such that i has the k-th highest marginal revenue

MRi(xi, x−i) given x−i. Therefore, the allocation rule of the optimal auction (q∗, p∗)

defined in Proposition 7 is the same as the allocation rule of the Generalized-VCG

mechanism (qV , pV ). Replacing X̂k(x−i) by x̂k(x−i) in the optimal auction (q∗, p∗)

defined in Proposition 7 yields

q∗i (xi, x−i) =

αk if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(147)

p∗i (xi, x−i) = q∗i (xi, x−i)vi(xi, x−i)−
∫ xi

0

q∗i (s, x−i)
∂vi(s, x−i)

∂s
ds (148)

I next substitute equation (147) into equation (148) to characterize the optimal pay-

ment rule p∗. Note that the term q∗i (s, x−i)×
∂vi(s,x−i)

∂s
inside the integral in p∗(xi, x−i)

is given by

q∗i (s, x−i)×
∂vi(s, x−i)

∂s
=

αk
∂vi(s,x−i)

∂s
if x̂k(x−i) ≤ s < x̂k−1(x−i)

0 if s < x̂K(x−i)

(149)
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so the integral of q∗i (s, x−i)
∂vi(s,x−i)

∂s
on [0, xi] is given by

∫ xi

0
q∗i (s, x−i)

∂vi(s, x−i)

∂s
ds

=


αk
∫ xi
x̂k(x−i)

[
∂vi(s,x−i)

∂s

]
ds+

∑K
j=k+1

{
αj
∫ x̂j−1(x−i)

x̂j(x−i)

[∂vi(s,x−i)
∂s

]
ds
}

if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

=


αk
[
vi(xi, x−i)− vi(x̂k, x−i)

]
+
∑K

j=k+1 αj
[
vi(x̂

j−1, x−i)− vi(x̂j , x−i)
]

if x̂k(x−i) ≤ xi < x̂k−1(x−i)

0 if xi < x̂K(x−i)

(150)

Substitute the optimal allocation rule q∗ given in equation (147) and the integral given

in equation (150) into the optimal payment rule p∗ yields

p∗i (x) =


∑K

j=k(αj − αj+1)vi(x̂
j, x−i) if xi ∈ [x̂k(x−i), x̂

k−1(x−i)]

0 if xi < x̂K(x−i)

(151)

which is equivalent to the Generalized-VCG payment rule. Therefore, under regularity

conditions R1-R3, the Generalized-VCG mechanism is the optimal position auction

subject to no reserve price among all ex-post IC and IR mechanisms.

I next compare the expected revenue of the Generalized-VCG mechanism to ex-

pected revenues of the GEA, the K-dimensional GSP auction and the K-dimensional

VCG auction. Since expected revenue of the GEA is higher than the other two static

auctions, showing that the Generalized-VCG mechanism yields higher expected rev-

enue than the GEA is sufficient for proving the revenue ranking provided in Proposition

9.

The ex-ante expected price for the last position K in the Generalized-VCG mech-

anism and GEA are given by

E
[
pG−V CG,(K)

]
= αKE

[
vi(YK , Y1, · · · , YN−1)

∣∣∣{YK−1 > X > YK}
]

E
[
pE,(K)

]
= αKE

[
v(K)(YK , YK , · · · , YN−1)

∣∣∣{YK−1 > X > YK}
] (152)
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According to the Linkage Principle,

E
[
pG−V CG,(K)

]
≥ E

[
pE,(K)

]
(153)

For any position 1 ≤ k ≤ K − 1, the expected price in the Generalized-VCG

mechanism and GEA are given by

E
[
pG−V CG,(k) − pG−V CG,(k+1)

]
= (αk − αk+1)E

[
vi(Yk, Y1, · · · , Yk, Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

E
[
pE,(k) − pE,(k+1)

]
= (αk − αk+1)E

[
v(k)(Yk, Yk, Yk+1, · · · , YN−1)

∣∣∣{Yk−1 > X > Yk}
]

(154)

Applying the Linkage Principle again yields

E
[
pG−V CG,(k)

]
− E

[
pG−V CG,(k+1)

]
≥ E

[
pE,(k)

]
− E

[
pE,(k+1)

]
(155)

which implies that E
[
pG−V CG,(k)

]
≥ E

[
pE,(k)

]
for all position k, so the expected rev-

enue of the Generalized-VCG mechanism is higher than the expected revenue of the

GEA, which is in turn higher than the expected revenue of K-dimensional VCG auction

and K-dimensional GSP auction under affiliated signals.

In the special case of independent signals, it is trivial that

E
[
pG−V CG,(K)

]
= E

[
pE,(K)

]
E
[
pG−V CG,(k) − pG−V CG,(k+1)

]
= E

[
pE,(k) − pE,(k+1)

] (156)

which means E
[
pG−V CG,(k)

]
= E

[
pE,(k)

]
for all position k, so the expected revenue of

the Generalized-VCG mechanism is equivalent to the expected revenue of the GEA,

which is in turn equivalent to the expected revenue of the K-dimensional VCG auction

and the K-dimensional GSP auction under independent signals. It follows that the

optimal revenue subject to no reserve price among all Bayesian IC and IR mechanisms

is practically implementable by the GEA, the K-dimensional GSP auction, and the

K-dimensional VCG auction under independent signals.
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